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S. Miccichè and R. N. Mantegna

Dipartimento di Fisica, Università di Palermo
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Foreword - This paper describes a project that is part of
SESAR Workpackage E, which is addressing long-term and
innovative research. The Workpackage E ELSA project started
in May 2011 so this paper summarizes the results of the first
year of the project.

Abstract—One of the key enabler to the productivity and
efficiency shift foreseen by SESAR will be the business-trajectory
concept. The path to a deep understanding of how this new
concept impacts on the future SESAR Air Traffic Management
scenario goes through a better understanding of the actual air
traffic network, and this will be done in the present paper
by analyzing traffic data within the framework of complex
network analysis. In this paper we will consider flights trajectory
data from the Data Demand Repository database. In a first
investigation, we perform a network study of the air traffic
infrastructure starting from the airports and then refining our
analysis at the level of navigation points in order to understand
what are the main features that may help explaining why some
nodes of the network happen to be found in the same community,
i.e. cluster. In a second investigation we perform a study at
the level of flight trajectories with the aim of identify statistical
regularities in the spatio-temporal deviations of flights between
their planned and actual 4D trajectories.

I. INTRODUCTION

In the future of Air Traffic Management (ATM) it is
expected to observe an increase of traffic demand and new
business challenges that will bring the current ATM system to
its capacity limits within the 2013-2015. As a consequence,
an overall productivity improvement is urgently needed [1].
The structure of ATM system, as it is known today, will
therefore change in many aspects. It is commonly accepted
that these changes will be hardly understood by relying on the
analysis of the single elements constituting the system, i.e.
by applying the current state-of-the-art validation approaches.
More likely the features of the future ATM system will be
the results of a complex interaction among its different key
elements [2].

One of the key enabler to the productivity and efficiency
shift foreseen by SESAR will be the business-trajectory
concept [1]. In the future SESAR scenario airspace users
will not fly along structured routes. On the contrary, they
will be able to fly a 4D trajectory selected on the basis of
their own business and efficiency needs. Within this major
change not only the ATM productivity should be drastically
enhanced, but consequently also the ATM system safety and
resilience standards will have to improve. The path to a deep
understanding of how these aspects will impact on the future
SESAR ATM scenario goes through a better understanding
of the actual air traffic network. This is not only desirable but
it is also requested by the Commission in the regulation for
performance scheme for air navigation services and network
functions [3] where it is indeed said that ”For the purpose
of target-setting (of the air navigation services), to each key
performance area shall correspond one or a limited number
of key performance indicators”. This will be done in the
present paper by analyzing traffic data within the framework
of complex network analysis. The aim of the paper is to
single out a bundle of significant regularities and patterns.
Some of these patterns will be clearly linked to operational
aspects (in the sense that the operational experts will be able
to explain their causes and show how they are engendered),
while others will require further analyses to understand their
dynamics and emergence.

In this paper, we will consider flights trajectory data from
the Data Demand Repository (DDR) database. In a first
investigation, we perform a network study of the air traffic
infrastructure starting from the airports, and then by refining
our analysis at the level of navigation points. With these
two levels of detail we adopt (i) standard network analysis
concepts, as degree and betweenness distributions, and (ii) we
identify communities, i.e. clusters, within these two networks
in order to understand what are the main features that may help
explaining why some nodes of the network happen to be found



in the same community. In network theory a “community”
of elements is a set of elements interconnected among them
to a degree which is higher than the one expected on the
basis of random interconnections. In a second investigation,
we perform a study at the level of flight trajectories with the
aim of identifying statistical regularities in the spatio-temporal
deviations of flights between their planned and their actual 4D
trajectories.

The paper is organized as follows: in section II we present
the data to be considered in our investigations. In section III we
present the investigation of the airports and navigation points
networks, while in section IV we show the results of our
investigations about the spatio-temporal deviations of flights
between their planned and actual 4D trajectories. We draw
our conclusions in section V.

II. DATA

The database we use is composed of DDR (Demand Data
Repository) and NEVAC (Network Estimation Visualization
of ACC Capacity) files already described in Ref. [4]. In
the present paper, we analyze data referring to the AIRAC
(Aeronautical Information, Regulation and Control) cycle
beginning on June 2, 2011 and ending on June 29, 2011,
corresponding to the AIRAC cycle 348. We extract the
information concerning all the flights crossing the ECAC (or
Italian, for some analyses) airspace, during this period. The
main data consists of the trajectories of flights, along with
some additional information about them (IATA code, type
of aircraft, among the others), used in order to set some filters.

For each flight, we have access to two different flight
plans: the last filed plan (noted M1), and the actual flight
plan (noted M3), updated by radar tracks. Both of them are
described by a succession of navigation points (nav-points),
with some precisely defined latitude and longitude, and time
stamp. One can then rebuild any trajectory, with a variable
time resolution ranging from 1 to 10 minutes.

From this database we select the flights that we are inter-
ested in. We drop a certain number of them because they do
not lie in our research scope: military flights in operation are
good examples. The following are the filters we adopted to
create our set of data:

• only non-military and commercial flights (having a IATA
code),

• only land-plane aircraft, i.e. no helicopter, gyrocopter, etc,
• flights with a duration longer than 10 minutes,
• flights having at least two points in the ECAC airspace.

In some analysis we restricted to the Italian airspace.

III. ATM COMPLEX NETWORKS

Complex Networks theory and techniques are nowadays
very popular in the scientific community and it is possible
to follow their increasing application to many and different
research topics. Among many others, during the last decade
they have been used to study the structural properties of the

Air Transportation System, too. A number of relevant works
[5], [6], [7], [8], [9], [10], [11] have investigated the main
network characteristics of the airport network, by analyzing the
degree and strength distributions, the betweenness centrality
of airports, etc, and have developed theoretical models in
order to understand the formation of such networks and the
reproduction of their stylized facts.We have reviewed some
of the most relevant metrics in the ATM context in Ref. [4].
To our knowledge, a comprehensive community analysis of
networks relevant in the ATM context is still lacking (with
the only possible exception of [7]), although communities, i.e.
groups of highly connected nodes, encode relevant information
on the topology of a network and might therefore reveal to be
extremely useful for the investigation of the ATM system.

In this section, we study the properties of two differ-
ent networks: the European airport network and the Italian
navigation point network, based on the 4D trajectories of
flights respectively crossing the ECAC and the Italian airspace.
Particular attention is devoted to the results about the detected
network communities and their geographical characterization.
In fact, these issues might be relevant for their implications
with respect to policies related to airspace division [12].

A. Airport Network

For each day in the AIRAC, let us now consider all flights
crossing the ECAC airspace and all active airports, i.e. airports
that are the initial or final destination of at least one flight. The
number of active airports and flights, as expected, show weekly
patterns during the whole AIRAC. In particular, the minimum
number of active airports and the number of flights shows
minima during the weekends and peaks on the Mondays,
Wednesdays and Fridays. In fact, over the weekend the active
airports decrease from about 500 to about 450. These closed
airports typically are those mainly devoted to cargo and mail
services. We would like to understand how these weekly
patterns are reflected in the airport network.

In the airport network, nodes are airports, and there is a
link between a pair of airports when there is at least a flight
connecting them. In this network, we introduce weights for
each link by considering the number of flights connecting the
two airports. We also assume the network to be symmetric. In
fact, in line with previous literature, we find that in any airport
the number of departing and arriving flights are almost the
same, see also [4]. Our aim is to look for statistical regularities
in the system that are maintained over time and to compare
them with the existing literature.

Several metrics can be considered in order to characterize
a network. We have reviewed some of the most relevant
metrics in the ATM context in Ref. [4]. A key metric in
understanding the properties of any network is the degree.
The degree of each node in a network is given by the number
k of links of the node. For our network, the degree of an
airport is the number of other airports that can be directly
reached from it in a day, i.e. the number of destinations.
In line with the existing literature [5], [7], [10], the degree
probability density function (pdf) Pk has been found to follow
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Fig. 1. Probability density function of the airport degree (a), scatter-plot of airport degree versus airport en-route delay (ERD) (b), distribution of airport
betweenness (c) and scatter-plot of airport betweenness versus airport degree (d). All days in AIRAC 348 are considered. Map of airport network in day
06/06/2011 of AIRAC 348 (e). The circles are the nodes of the airport network, while the links are omitted for readability. The color of the node identify the
community each node belongs to. European FABs (f), downloaded from http://www.skybrary.aero/index.php/File:European FABs.jpg

a power law function Pk ∝ k−αd for large degree values,
see Fig. 1(a). Thus the probability of finding airports with
a very large number of flight connections is much higher
than what expected in the case of a Poisson distribution of
degrees, usually associated to a random graph [13]. By using
the Hill estimator methodology [14] the exponent of the pdf,
averaged over all AIRAC days, is αd = 1.59± 0.11. A power
law Ps ∝ k−αs for large strength values has been found also
for the airport strength pdf: the node strength is simply the
sum of the weights associated to the links that originate from
(terminate in) it. In our case, the strength of a node gives the
total number of flights departing from (arriving to) an airport.
In this case the Hill estimator methodology, after averaging
over all AIRAC days, gives an exponent αs = 1.48± 0.03.

Then, we have analyzed the relationship between the
degree and the en-route delay (ERD) of an airport, the
latter one measured as the average difference between the
flight duration estimated from the actual flight plan (M3)
and that estimated from the planned flight plan (M1), see
subsection IV-C, for all flights departing from or arriving
to an airport, see Fig. 1 (b). We have found that for large
airports, such as Frankfurt and Schiphol, that have degree
larger than 200, the average en-route delay is essentially

positive, while for small airports we can have both positive
and negative en-route delays. Moreover, small airports
can have en-route average delays even larger than large
airports. Large en-route delays in large airports can possibly
be explained with the fact that in large airports there are
long-range flights that are likely to experience such en-route
average delays. The situation for small airports is less clear.
In fact, it is commonly said that small airport “receive” delay
from larger airports, meaning that flights arrive late in small
airports because they are delayed in large airports. Note that
analogous considerations are valid for the strength distribution.

Another relevant metric characterizing a network is the
betweenness centrality [4], which gives a measure of how
central is an airport in the network. High values of between-
ness indicate that such airport belongs to many paths linking
one airport to another. The log-log scale used in Fig. 1 (c),
makes evident the power-law behavior of the betweenness
distribution, thus suggesting that large airports behave like
hubs. In Fig. 1 (d), for each day in AIRAC 348, we report the
scatter-plot of the node betweenness versus the node degree,
showing that large airports tend to have large betweenness,
thus reinforcing the idea that large airports behave like hubs.
There exist exceptions, like the Liege cargo airport (EBLG) in



day 06/06/2011, which has unitary betweenness and a degree
of 58.

In general, there exists a large portion of medium-size
airports with a large betweenness, as also found in [6].
These airports are probably the hubs of medium size airlines.
Indeed, the concept of hub should be associated to airlines
rather than to airports. It is the airline that organizes its own
flight network around one or more airports that are the centre
of operations and maintenance, especially for large traditional
airlines. On the other hand there might be airports that are
relevant for specific services, such as cargo. This explains
why small airports end up being central in the network even
though they have a not so large number of incoming and
outgoing flights.

A new aspect of the investigations we present here is
the detection of communities within the network and their
geographical characterization. In network theory a community
of elements is a set of elements interconnected amongst them
at a level that is higher than the one expected on the basis
of a null hypothesis of random interconnections [15]. The
idea is therefore to understand whether in the network it is
possible to detect sets (communities) of nodes (airports) that
share a common profile with respect to the flights that are
departing/arriving in them. In order to identify communities,
we considered the Blondel algorithm, see [16]. This algorithm
searches for the partition of the network into modules (commu-
nities) such that modularity gets its maximal value. Modularity
is a network metric computed as the fraction of the links
that fall within the given modules minus the expected such
fraction if links were distributed at random. Exact modularity
optimization is a problematic task from the computational
point of view. Therefore, for large networks, algorithms which
are searching a subsets of potential partitionings are necessary.
This introduces elements of stochasticity in the algorithm
search process. We have therefore performed 100 iterations of
the algorithm for each day in the AIRAC and we have chosen
the one with the highest modularity1. A visualization of the
partitioning of airports in communities is given in Fig. 1 (e).
This partitioning presents similarities with the organization of
the European sky in FABs (Functional Airspace Blocks) [12].
FABs are airspace blocks based on operational requirements
and established regardless of state boundaries, where the
provision of air navigation services and related functions are
performance-driven and optimized with a view to introduce, in
each functional airspace block, enhanced cooperation among
air navigation service providers or, where appropriate, an
integrated provider. The FABs are illustrated in Fig. 1 (f).
The comparison of FABs with the communities of Fig. 1 (e)
indicates that some of our communities correspond to FABs
(UK and Ireland), while in other cases our communities seem
to indicate that the optimal partitioning of the airspace might

1For each day in the AIRAC we compute the ratio between the standard
deviation and the mean value of the modularity over the 100 realizations. The
average value of this ratio over all the AIRAC days is 0.0053 ± 0.0016, thus
showing an extremely high stability of the partitions.

be different from the one of FABs. For example, in our case
on the selected day 06 June 2011 France and Spain belong to
the same community even though they are in different FABs.
Our investigations show that the communities may also change
over the week, thus resembling the weekly patterns on the
number of active airports mentioned above.

The results mentioned above are observed also for other
AIRACs, at least qualitatively. A wider presentation of the
statistical regularities in the ATM system covering a large
number of AIRACs will be given in the forthcoming D1.3
ELSA project deliverable (due by the end of november 2012).
To give a flavor of our findings in Fig. 2 we give the number
of flights (blue) and airports (green) in all the AIRACs of
our database: from AIRAC 333 to AIRAC 348. The figure
shows that there exists a seasonality pattern in the number of
flights. The effect is almost negligible for the number of active
airports. Hence, it is reasonable to expect the same results
described above across the whole season.

B. Navigation Point Network

We now move to a finer level of investigation of the air
traffic management system infrastructure, by studying the
navigation point2 network at the Italian airspace level. This
type of analysis is quite a novelty in the literature. As far as
we know, one of the few similar studies is the one in Ref.
[17], where the Chinese airspace has been investigated. It
was found that the topology structure of nav-point network is
apparently more homogeneous than the one of the Chinese
airport network. By examining the scheduled flights, the
authors find that the distribution of air traffic flow on the
nav-point network is rather heterogeneous with exponential
strength distribution.

In our network, the nodes correspond to nav-points, and a
link between two nav-points A and B is set whenever there
is a flight for which A and B are the begin and end point
of a segment (portion between two trajectory points) on the
trajectory of the flight, i.e. the aircraft flies directly from A
to B. We will refer to such network as the (local) nav-point
network. We also consider the network as directional: when
there is a a flight going from A to B, then we set a directional
link between A and B. The adjacency matrix is therefore
only approximately symmetric.

As in the airport case, weekly patterns are recognizable in
terms of number of active nav-points over a week. Similarly to
the airport case, we define active nav-points those that are part
of at least one flight trajectory. We observe that the number
of nav-points in the planned trajectories is usually smaller
than the number of those used in the actual trajectories. The
difference between these numbers could be due to the fact
that during the planning stage of the flight trajectories some
nav-points are not used because they are reserved for military

2The navigation points are also called way points or nav-points, i.e., fix
points in the route airways
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Fig. 3. Probability density function of the nav-points degree (a), strength (b) and betweenness (c) according to the actual flight plans (M3 files).

usage (CDR - Conditional Routes). Under specific conditions
these nav-points can be subsequently made available for civil
usage, and therefore considered when using the realized flight
trajectories.

As for the airport network, the degree and the strength pdf of
the navigation points used by the planned trajectories shows
a power-law decay, see Fig. 3, (a) and (b), as well as the
betweenness centrality pdf, see Fig. 3, (c). By using the Hill
estimator methodology one obtains that the exponent of the
degree pdf, averaged over all AIRAC days is αd = 2.93±0.06
and the exponent of the strength pdf, averaged over all AIRAC
days is αs = 1.52 ± 0.02. Also in the case of the (local)
navigation points network, we have performed a community
search analysis by using the Blondel algorithm. A visualization
of the organization of navigation points in communities is
given in Fig. 4 for the actual nav-points local network on
Monday 06/06/2011. A regional clusterization of nodes is
clearly visible. We believe that this analysis might be relevant
for the design of the optimal partitioning of the airspace in
sectors. A comparison of sectors and communities within

the context of the navigation points network would be as
relevant as a comparison between communities and FABs in
the case of the airport network. This would anyway benefit
from considering the nav-points network for different periods
of the day, in order to investigate whether or not there exists
an intraday dynamics of communities and how this compares
with the fact that sectors are opened and closed in order to
comply capacity needs.

IV. DEVIATIONS AND DELAYS

The second type of analysis we performed on the DDR
dataset aims at identifying statistical regularities in the spatio-
temporal deviations of flights between their planned (according
to M1 files) and their actual (according to M3) 4D trajectories.

The aim of this analysis is manyfold. First, it aims at
finding statistical regularities describing the deviation of
flights in order to understand their origin and their possible
impact on the system. Second, it aims to introduce several
possible metrics for delays, each able to capture some aspect
of deviations. For lack of space, in this paper we will present
results based on simple metrics in order to give an idea of
our approach. We will not consider more complex metrics



Fig. 4. Map of nav-point local network in day 06/06/2011 of AIRAC 348
(d). The circles are the nodes of the nav-points, while the links are omitted
for readability. The colors of the nodes identify the communities each node
belongs to.

and the analysis of the relation between them. The third
motivation behind our analysis is more operational and aims
at creating maps of “hotspots” of airspace, i.e. points where
deviations are more likely to occur. We believe these maps
might be useful to identify criticalities in the system and to
improve it.

Due to the different nature of deviations, we treat sepa-
rately horizontal deviations, vertical deviations and delays. We
present in the following the results of our analysis of the Italian
airspace during the 27 days of AIRAC 348.

A. Horizontal deviations

We first consider horizontal deviations. Fig. 5 (a) gives a
quantitative idea of how much the flights are deviated. More
precisely, if lM1 is the length of the trajectory in the filed
plan and lM3 the length of the actual trajectory, then Fig.
5 (a) shows the histogram of (lM3 − lM1)/lM1. This figure
displays a big peak around 0, which shows that many flights
are only marginally deviated. However, a significant number
of flights have a significant change in length, which proves
that they do not follow their planned trajectory. Moreover,
this graph is pretty symmetric, so the deviations lengthen
the trajectories as much and as frequently as they shorten it.
Obviously these two parts of the graph have very different
causes.

Planned and actual trajectory can also be compared by
considering the navigation points of the trajectory. Let nM1

and nM3 represent the numbers of nav-points crossed by a
flight. Fig. 5 (b) shows the histogram of nM3 − nM1 (in
blue). This histogram is strikingly different from the one in
Fig. 5 (a) because it is very asymmetric. In fact, flights can
skip many nav-points during their trajectory, but rarely add

Fig. 6. Image of the nav-point network. Each circle is a navigation point, the
squares being the airports. Nav-points are linked if at least one flight passes
from one to the other consecutively. The links are weighted by the number of
flights passing from one to the other, represented by thickness on the image.
The size of the node is proportional to its strength. Finally, the color codes
the probability that a flight deviates from this node. There is one color for
each decile of this quantity, so there is the same number of nodes of each
color on the image. The network is computed with the planned trajectories
(M1).

more than 3 nav-points. These portions of trajectories where
the flight skips at least one nav-point are called “directs”
and are usually given by air controllers when no safety issue
is expected ahead. Note also that there is a large number
of flights which are having only one nav-point more than
expected: we will see why in the following. Finally, the colors
(explained in the caption) indicates that skipping nav-points
is typically associated with a shortening of the trajectory,
even if some exceptions are present.

Fig. 5 (c) gives a more local information on where the
deviations typically occur. It shows the probability that the
first deviation occurs at a given point of the trajectory. As one
can see, more than one third of the flights are deviated at the
very end of the trajectory. The inset shows that in fact this
deviation occurs with one temporary point at the end of the
trajectory. Thus, these deviations seem to be small refinements
of the trajectories close to landing.

One might ask where are flights typically deviated? To
answer this question, we create maps of the trajectory nav-
point network (see Sec. III-B) attributing to each nav-point
a score quantifying how frequently or how much a flight
is deviated at this point. We can create maps for different
deviation metrics. An example of this approach is shown in
Fig. 6 where trajectory nav-points are colored according to
the probability that a given flight is deviated from its planned
trajectory when crossing this point.

As one can see, nav-points have very different probabilities
of deviations, which shows that different nav-points have
different roles in the nav-point network. This allows to
identify hotspots in the nav-point network. For instance,
nav-points close to big airports seem to have a higher
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Fig. 5. a) Histogram of the relative difference of length between the planned and the actual trajectories. b) Histograms of the difference in the number of
nav-points in the planned and the actual trajectories. The blue bars are computed by considering all the flights, whereas red bars are computed only with flights
having a longer (shorter) trajectory in the actual trajectory than in the planned one. c) Probability that the beginning of the first deviation of a flight occurs at
some point of the trajectory. In abscissa, the distance to the start of the trajectory is renormalized between 0 and 1 by the total length. The probability does
not start from 0 because trajectories are cut at the borders of the airspace. Inset: probability that the flight crosses a temporary point.

probability of deviation. Moreover, while the majority of the
points have a probability of generating a deviation below
14%, a small number of points have very high probabilities,
up to 79%.

In conclusion, horizontal deviations are pretty frequent and
allows a change in length of 4% on average. These deviations
are pretty symmetric between positive and negative values,
when one considers the length, while they are quite asym-
metric, when one compares the number of nav-points crossed.
Many deviations are actually directs or small refinements for
landing. A small number of nav-points carry the most part
of the deviations. As a consequence, points around airports
are more likely to provoke deviations compared to the other
nav-points.

B. Deviations in altitude

The vertical dimension of space is very different from the
others for aircraft, because of the gravity and because of its
much smaller scale. Hence, one can expect that changes in
altitude appear very differently from changes in the horizontal
plane. In Fig. 7 (a) we present the histograms of the aver-
age altitude of the segments (portion between two trajectory
points) of all the flights extracted from the last filed flight plan
(main panel) and from the actual flight (inset).

We observe that the two histograms are globally similar.
This shape is dictated by geographical constraints (distance
between airports) as well as by the Italian airspace’s configu-
ration. However, on a finer scale, the two distributions show
significant differences. The M3 plot exhibits a much smoother
curve than the M1, as well as an increase in the number
of segments at low altitude. Since the companies build their
initial flight plan on factors like fuel, mostly in an automated
way, then the results are often similar for the same pairs of
airports – or routes. Hence, the M1 distribution exhibits sharp
peaks and holes. On the contrary, air controllers tend to relax
the load on flight levels by changing the planned altitude.
Hence, the altitudes are spreading, because flights are fleeing
the most crowded flight levels. Since this spreading is small
in magnitude, the global shape remains the same.

On the other side, the shape of the left part of the histogram
undergoes a change which is not due to this relaxation, but is
again related to Fig. 5 (c). Indeed, we saw that many flights
were deviated at the end of their trajectory to refine the landing
trajectory, typically by adding one point to their trajectory.
Hence, in M3 trajectories many segments are created at low
altitude and they be can observed in Fig. 7 (a). This conclusion
is confirmed by the analysis of the load of a flight level, i.e.
the total length of segments flown at a given flight level. Fig.
7 (b), shows the histogram of the load of actual trajectories
and it can be seen that the peak observed in the inset of Fig.
7 (a), disappears. In fact, the load is monotonously increasing
with the altitude, confirming our explanation above.

C. Temporal deviations: delays

Delay is the last dimension to consider for 4D trajectories,
but is quite different from the others. In fact, whereas vertical
or horizontal deviations cannot occur before the beginning of
the flight, delay can. As a consequence, we define three types
of delays for each flight:

• Departure Delay (DD): difference between the departure
time in M3 and the departure time in M1.

• Arrival Delay (AD): difference between the arrival time
in M3 and the arrival time in M1.

• En-Route Delay (ERD): difference between AD and DD.
These three types of delays are very different from each other,
with different magnitudes. DD and AD are typically of 20
minutes, whereas ERD is usually under 5 minutes. They are
also different because they have different causes. Whereas DD
can be due to airport problems or network management, ERD
can only be due to re-routing or variations of speed.

In Fig. 8 we present the variation of these delays during the
day, and we consider separately positive values (left panel) and
negative values (right panel) of delays for each flight. Despite
being quite different in nature, the three quantities display a
roughly similar pattern in each graph, which suggests common
causes.

On the other hand, the variations during the day are very
different for the positive and the negative parts of the delays,



a) b)

Fig. 7. a) Histograms of the mean altitude of segments during the flights, in M1 (main panel) and M3 (inset) data. b) Measure of the load of each layer of
altitude. The load is measured by computing the total length of segments flown at each altitude during the whole AIRAC cycle.

Fig. 8. Evolution of Departure Delay (DD), En-Route Delay (ERD) and Arrival Delay (AD) during the day. The hour in abscissa is the departure hour for
DD and ERD and the arrival time for AD. The left plot is computed only with positive values of delays, whereas the right one is computed only with negative
values (colors online).

i.e. for early flights and delayed flights. In fact the negative
part shows a strong daily seasonality, whereas the positive part
does not display strong variations during the day. This can be
compared to the daily seasonality of traffic intensity during
the day. Indeed, we see that flights tend to be early at the
very beginning and at the end of the day. This can be due
to the fact that controllers are more likely to give directs to
pilots, which shorten the trajectory, during the hours where the
traffic is low and easy to manage. On the other hand, delayed
flights seem to be quite insensitive to the traffic, since the plots
are almost flat, although its seems also that the delays are
slightly increasing during the day. One may want to attribute
this phenomenon to the reaction delay – flights may be delayed
because their aircraft was used by a previous flight and this
one was delayed. However, we can not be sure about this.
Indeed, we have only access to M1, which is the last filed
flight plan, and not the “M0”, which would be the real initial
flight plan. Hence, reaction delay (M3 - M0) can be absorbed

by the new flight plan M1. How many companies are doing
this is still unclear to us.

V. CONCLUSIONS AND FUTURE WORK

We have described a few statistical tools able to capture
relevant information about the Air Traffic System. In the first
part of the paper we have shown how community detection on
airports and nav-points networks can be relevant for the design
of the optimal partitioning of the airspace in FABs. In the
second part of the paper we have shown how basic statistical
analysis of appropriate proxies may reveal important features
of the system.

The analysis is still ongoing and it is too early to discuss any
finding and improvement actions related to the ATM system.
Our expectation is to obtain the following insights from the
analyses discussed in this paper.

• As for the community detection analysis, the different
communities will be identified and compared to identify
seasonal variations and communities associated to the



different types of flights, for example by analyzing the
communities generated by flights belonging to the same
market segment. The end goal of this analysis is to
identify which group of airports (and group of nav-
points) are functionally connected, potentially resulting
in dynamic FABs, or in ad hoc connections between one
airport and a specific FAB.

• The analyses on deviations presented in the second part
of the paper will be used to carry out a case study by
comparing a set of key nav-points in the Italian airspace.
The aim of this case study is to start from an operational
taxonomy of key nav-points and describe it by means
of a set of statistical measurements. The end goal is to
reverse-engineer the process, so to be able to use these
measures to identify key nav-points across Europe, and
characterize them in different taxonomy types. This could
drive airspace design intervention by identifying critical
bottlenecks, or crossings, by data mining, and not only
relying on experts input.

A research gap still exists between the results obtained in the
academic community and the ATM world. The next phase
of our research is to bridge this gap, at least partially, by
iteratively discussing our results with ATM domain experts.
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