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Gérald Gurtner1, Stefania Vitali2, Marco Cipolla2, Fabrizio Lillo1,2,3*, Rosario Nunzio Mantegna2,4,

Salvatore Miccichè2, Simone Pozzi5
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Abstract

We show that the European airspace can be represented as a multi-scale traffic network whose nodes are airports, sectors,
or navigation points and links are defined and weighted according to the traffic of flights between the nodes. By using a
unique database of the air traffic in the European airspace, we investigate the architecture of these networks with a special
emphasis on their community structure. We propose that unsupervised network community detection algorithms can be
used to monitor the current use of the airspace and improve it by guiding the design of new ones. Specifically, we compare
the performance of several community detection algorithms, both with fixed and variable resolution, and also by using a
null model which takes into account the spatial distance between nodes, and we discuss their ability to find communities
that could be used to define new control units of the airspace.
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Introduction

In the recent years, network science has been largely applied to

air traffic problems (for a recent review, see [1]). These studies

have focused mainly on the topological characterization of the

airport network [2–15]. In this network, airports are nodes and a

link exists if two airports are connected by a direct flight. Often the

number of flights between two airports in a given time window is

used to weight the links, making the graph an instance of a traffic

network. The interest in airport networks comes from the need of

modelling traffic flow, mobility of passengers, and spreading of

infectious diseases [16].

An important characteristic of a complex network is its

organization in communities (clusters) [17]. Communities are

generically defined as sets of nodes that are more connected

among themselves than with the rest of the network. Communities

are, therefore, an important element to understand and model the

architecture of a network. The purpose of this paper is the

identification of communities in the different networks that can be

defined in the air traffic system.

Airspace is in fact a complex system which is partitioned for a

series of reasons, mainly related to air traffic control. As we explain

below, the European airspace is partitioned in a hierarchical way.

At the highest level, the space is partitioned into multinational

areas, termed Functional AirBlocks (FAB). The FABs are not yet

fully implemented, but their activiation is planned in the near

future as a mean to increase the capacity in terms of traffic. Then

each country has its own National Airspace, which is typically

partitioned into Air Control Centers. Each of these is itself

partitioned into sectors, which are the smallest unit of control,

being under the direct supervision of air traffic controllers. Finally,

inside the sectors we find the navigation points constituting the

grid where the flights move. In fact, nowadays flight plans are

defined as a set of consecutive fixed points that the aircraft is

supposed to pass at predefined times. On the smallest scale,

therefore, a flight plan is a path on a grid whose nodes are the

navigation points. The choice of the boundaries of these multiple

partitions is decided in a strongly supervised and not fully

quantitative way, taking into account political and strategical

reasons and also traffic considerations.

To the best of our knowledge this manuscript constitutes the

first attempt to apply community detection to networks of the air

traffic system and also to consider different types of networks. In

fact, we do not consider only airport networks but we consider

three different types of network of the airspace thus creating a

multi-scale structure. Beside the airport network, for which few

papers [5,18] have studied the community structure, we will

consider the sector network and the navigation point network. The

former is a network where nodes are sectors – the smallest units of

control – and links indicate the presence of flights going from one

sector to another. The latter takes the navigation points as nodes,
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the links being built in the same way. Making use of a unique and

detailed database of the European air traffic, we investigate the

topological and community properties of the sector network and of

the navigation point network. To the best of our knowledge, the

sector network has not been investigated before, while the

topological properties of the navigation point network has been

investigated only in Ref. [19] in the case of the Chinese airspace.

As detailed below, we believe that community detection in air

traffic networks is important for two reasons. First, it obviously

improves the characterization of the networks with respect to

analysis based on the measurement of the standard metrics of

network topology (degree distribution, betweenness centrality,

small world effect, etc.) already considered in the literature, at least

for the airport network. Secondly, and more importantly, we

believe that community detection could be helpful to guide the

design of new airspaces in order to have a better control of the air

traffic. In particular, the Single European Sky ATM Research

(SESAR) programme – which aims at a complete reorganization

of the Air Traffic Management (ATM) in the next twenty years in

answer to the increase of traffic in Europe – could benefit from this

method.

In this paper we show how the community detection in

networks provides information on the appropriateness of the

airspace design at the various scales considered, based on the sole

knowledge of the actual air traffic data. In this respect, the added

value of this paper is twofold. On one side we show how methods

devised for identifying communities in networks could be used to

help designing the structure of airspace in a bottom-up way, i.e.

starting from the observed behavior of the system. On the other

side, this analysis could be seen as an ‘‘horse race’’ among different

community detection methods in order to find which one works

best when the investigated network describes a traffic flow (not

necessarily aircraft, but also cars, data, etc.). These two aspects can

not be kept fully distinct. Indeed, it is hard to distinguish whether

the actual traffic flow is a consequence of the airspace partition or

viceversa. As we mentioned above the airspace partition is due to

different reasons sometimes unrelated with the effective air traffic

needs.

The paper is organized as follows. In the next Section we

present the current structure of airspace, the considered networks,

and their ‘‘natural’’ community structure, based on the existing

partitions (see also Information S1). Section ‘‘Data’’ describes our

unique and complex database and in Section ‘‘Methodology’’ we

present the algorithms for community detection, for comparing

partitions, and to characterize the identified communities. Section

‘‘Results’’ presents our main results and in Section ‘‘Conclusions’’

we draw some conclusions.

The Multi-Scale Network Structure of Airspace
The airspace can be considered as a multi-scale, dynamic

network of interconnected entities. In this Section we give a brief

overview of the airspace structure and we introduce the relevant

entities for our analysis. We then describe the different networks

that can be defined in the airspace and for each of them we will

describe the ‘‘existing partitions’’ i.e. the network communities

already present in the system due to the airspace partitioning in

ACCs, NAs and FABs made by Eurocontrol and the air traffic

service providers. Such partitions are primarily driven by the

political map of Europe and by operational considerations.

Structure of the airspace
Flights do not currently follow a smooth and optimized

trajectory. Instead, they are supposed to follow a path on a

predefined mesh, whose nodes are called navigation points, or

navpoints. The position of a navpoint is given by a latitude and a

longitude, but not an altitude. A flight plan is therefore a

succession of navpoints, together with timestamps and altitudes,

that an aircraft is supposed to follow.

The deviations from the planned trajectory are typically

triggered by the air traffic controller. Specifically the airspace is

divided in three dimensional airspace volumes, termed elementary

sector, or collapsed sector (called simply sector in the following). A sector

is handled by two controllers: one ‘‘separates’’ the aircraft (making

sure they do not come too close one to each other) in the sector

itself, while the other one takes care of the interface with the other

sectors. The sectors are dynamic entities, which can be split or

aggregated depending on the air traffic load. Moreover, the sectors

can be roughly divided in two types: the en-route sectors,

controlling the planes in their en-route trajectory, and the

Terminal Maneuvering Areas (TMA) or the Control Zones

(CTR), managing the take-off and landing phases.

The airspaces themselves are bigger, static entities aggregating

several sectors. The first important one is the Air Control Center

(ACC), where all the sectors are physically controlled from the

same room (control center). In the European airspace, called

ECAC (European Civil Aviation Conference), there are between 1
and 5 ACCs per country. Countries in the enlarged ECAC space

are: Iceland (BI), Kosovo (BK), Belgium (EB), Germany-civil (ED),

Estonia (EE), Finland (EF), UK (EG), Netherlands (EH), Ireland

(EI), Denmark (EK), Luxembourg (EL), Norway (EN), Poland

(EP), Sweden (ES), Germany-military (ET), Latvia (EV), Lithuania

(EY), Albania (LA), Bulgaria (LB), Cyprus (LC), Croatia (LD),

Spain (LE), France (LF), Greece (LG), Hungary (LH), Italy (LI),

Slovenia (LJ), Czech Republic (LK), Malta (LM), Monaco (LN),

Austria (LO), Portugal (LP), Bosnia-Herzegovina (LQ), Romania

(LR), Switzerland (LS), Turkey (LT), Moldova (LU), Macedonia

(LW), Gibraltar (LX), Serbia-Montenegro (LY), Slovakia (LZ),

Armenia (UD), Georgia (UG), Ukraine (UK).

Then we have the National Airspace (NA), aggregating all the

ACCs of a single country. The two dimensional boundaries of a

NA are very close to the real country’s boundaries. On a larger

scale, we find the FABs [20], aggregating several NAs, like, for

example, the Portuguese and the Spanish ones. They are not

actually operative yet, but they will be important in the so-called

new SESAR scenario [21], a future air traffic management

scenario that will change dramatically the way air traffic is

managed.

Finally, the last important element are the airports. They act as

sinks and sources for the network by ‘‘absorbing’’ and ‘‘releasing’’

aircraft in the system.

Network descriptions of the airspace
Given the structure summarized above, it is possible to define (at

least) three different networks describing the airspace. The three

networks operate at different spatial and temporal scales, therefore

the airspace system can be considered as a multi-scale network. In

order to construct the networks, we shall consider a time interval

(typically one day) and we define the following graphs.

The first graph is the network of navigation points. In this network

each node is a navigation point and two nodes are connected if at

least one flight goes directly from one node to the other in the

considered time interval. Similarly, the second graph is the network

of sectors. Each sector is a node and two nodes are connected if at

least one flight goes directly from one node to the other in the

considered time interval. Finally the third graph is the airport

network where nodes are airports and two nodes are connected if at

least one flight goes from one node to another in the time interval.

Multi-Scale Network Analysis of European Airspace
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All the networks are directed and weighted. The weight is given

by the number of flights between two nodes in the given time

interval. As far as the direction is concerned, we notice that most

of the graphs are almost symmetric and therefore one makes a

small error in considering the symmetric version of the network.

Finally, note that all these networks are traffic networks. This

means that the links are defined by the traffic in the time interval

and are different from a street network where the infrastructure

defines the link.

Existing partitions of the airspace networks
The main objective of this paper is the comparison between

unsupervised partitions of the different networks of the airspace

and the partitions that are already present in the system as a result

of its design. We call these partitions, existing partitions. Here we

present the existing partitions of the three networks that we will

consider in the following. A set of Figures with the different

existing partitions for the European airspace is shown in

Information S1.

The navpoint network can be partitioned in terms of national

airspaces (see Fig. S1) or in terms of control centers (see Fig. S2).

The sector network can be partitioned in terms of FABs (see Fig.

S3 and Table 1 in Information S1), in terms of national airspaces

(see Fig. S4), or in terms of control centers (see Fig. S5). It is worth

mentioning that the considered 12 FABs include the 9 FABs

planned by ECTL plus other three FABs defined by the authors

and based on geographic proximity with the purpose of

appropriately comparing the existing and obtained partitions.

Finally the airport network can be partitioned in terms of FABs

(see Fig. S6) or in terms of national airspaces (see Fig. S7).

Data
Our database contains information on all the flights that, even

partly, cross the ECAC airspace. Data are owned by EURO-

CONTROL (http://www.eurocontrol.int), the European public

institution that coordinates and plans air traffic control for all of

Europe. Data were obtained as part of the SESAR Joint Undertaking

WP-E research project ELSA ‘‘Empirically grounded agent based

model for the future ATM scenario’’ after competing in a 2011

public call issued by SESAR Joint Undertaking. Data can be

accessed by asking permission to the legitimate owner (EURO-

CONTROL). The owners reserve the right to grant/deny access

to data.

The data come from two different sources. First, we have access

to the Demand Data Repository (DDR) [22] from which we have

all the trajectories followed by any aircraft in the ECAC airspace.

In this paper we consider a 28 day time period (termed AIRAC

cycle), specifically the one lasting from the 6th of May 2010 to the

2nd of June 2010. This AIRAC cycle is not including major

holidays that might alter the estimation of statistical properties. A

trajectory, called indifferently flight plan here, is made by a

sequence of navigation points crossed by the aircraft, together with

altitudes and timestamps. The typical time between two navpoints

lies between 1 and 10 minutes, giving a good time resolution for

trajectories. In this paper we only use the ‘‘last filed flight plans’’,

which are not the real trajectories flown, but the planned

trajectories – filed from 6 months to one or two hours before

the real departure. We do not use the real trajectories because we

do not want to include other factors of disturbances, like weather,

in our analysis. We selected only scheduled flights – excluding, in

particular, military flights – using landplanes (regular aircraft) and

having a IATA code. This gives, in first approximation, the set of

commercial flights. We also excluded all flights having a duration

shorter than 10 minutes and a few other flights having obviously

data errors.

The other source of information are the NEVAC files [23] that

contain all the elements allowing the definition (borders, altitude,

relationships, time of opening and closing) of the elements of

airspaces, namely airblocks, sectors, airspaces (including FIR,

National Airspace, ACC, etc.). The active elements at a given time

constitute the configuration of the airspace at that time. These files

allow to determine the configuration of the airspaces for an entire

AIRAC cycle. Here we only use the information on sectors,

airspaces and configurations to rebuild the European airspace.

Specifically, at each time we have the full three dimensional

boundaries of each individual sector and airspace in Europe.

Methods and Materials

Community detection methods
In this article, we consider different algorithms of community

detection on networks. Specifically, we consider Infomap [24], the

maximization of the modularity with the Louvain method [25]

and simulated annealing, and OSLOM [26]. Moreover, since we

want to identify the hierarchical structure of airspace communities,

we also used the multi-resolution modularity [27]. This method is

also useful to investigate the robustness properties of the

modularity partition (see below and [28]).

The first algorithm we used is called Infomap [24]. The idea

behind the method is to consider a random walk over the network.

The more the nodes are connected one with each other, the more

the walker will stay with them and thus form a community. The

analysis of the flows over the network gives access to the

Table 1. Average number of communities in the network of navpoints and average minimum number of communities containing
90% of the nodes.

Existing part. ACC NA

Nc 75.5+2.6 46.0+0.

N0:9
c

53.3+2.2 20.0+0.

Unsupervised part. Inf. Modularity OSLOM Mod. max. Mod. max.

(cmax~2:5) (cmax~0:099)

Nc 598.0+14.7 42.8+3.9 150.0+21.6 63.1+4.6 44.2+3.5

N0:9
c

408.8+8.5 25.9+1.6 75.1+4.4 36.3+2.2 24.6+1.6

The top part refers to existing partitions and the bottom part to the unsupervised partitions. Results were obtained averaging over 28 days, with standard deviations
taken as error bars.
doi:10.1371/journal.pone.0094414.t001
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underlying community structure. More precisely, the algorithms

compute an optimized compressed description of information

flows and, from the information theory point of view, the

community detection algorithm searches the partition which

minimizes the description length of an infinite random walk over

the network. Numerical experiments [17] indicate that this

algorithm has a complexity O(m) where m is the number of

edges. It is thus efficient with sparse networks, where m*n with n
the number of nodes. In our investigation we used the usual

implementation of the package, available online [29].

The second method is based on the maximization of the

modularity. For a given partition P, the modularity Q is the sum of

the number of links within each community minus the expected

number of links for a given null model, i.e.

Q~
1

2m

X
C[P

X
i, j[C

Aij{Pij

� �
, ð1Þ

where Aij is the element ij of the weighted adjacency matrix of the

graph, Pij is the element ij of the weighted adjacency matrix under

the null model, and m~
P

i,j Aij=2 is the total weight in the

network. The most popular choice for Pij is the one proposed by

Newman and Girvan (NG) [30]: PNG
ij ~kikj=2m, where ki is the

strength of node i. The null hypothesis corresponds to a

randomization of the links preserving the strength of each node.

It is well known that modularity has a resolution limit [31], i.e. in

large networks modularity fails to resolve small communities.

For this reason, we also considered the multi-resolution

modularity [27], which gives the possibility of spanning different

resolutions. In fact, by replacing Pij by cPij in Eq. 1 one gets

Qc~
1

2m

X
C[P

X
i, j[C

Aij{cPij

� �
, ð2Þ

and one can easily span different levels of description by changing

the resolution parameter c. By increasing c one typically obtains

smaller and smaller communities, until one gets each node in its

own separate community. On the contrary, decreasing c
eventually leads to a single community including all the nodes of

the network. Multi-resolution modularity gives also information on

the robustness of the identified communities. In fact, when the

identified communities are essentially unchanged when the

resolution parameter is varied inside an interval, one can conclude

that the partition is robust. This is signaled by the presence of

plateaus in the curve describing the number of communities as a

function of c.

Modularity can also be generalized by using different null

models. In Section ‘‘The airport network’’, we examine a null

model which takes into account the spatial localization of the

nodes. Following Ref. [32], we use for Pij the following form:

PGEO
ij ~kikj

P
(k,l)jdkl~dij

Akl

P
(k,l)jdkl~dij

kkkl

:kikjf (dij), ð3Þ

which is the weighted probability for a node i to be linked to

another node j at euclidean distance dij~d. This choice allows to

see the communities which are not only explained by their

geographical proximity. It is important to notice that, differently

from the gravity-like models where the distance function is

assigned a priori, here we use the actual data to infer the

deterrence function f (dij) (as done also in Ref. [32]) describing the

role of distance between nodes in determining the probability that

they are linked according to the above Eq. 3.

Different computational methods can be used to find the

maximum of modularity. One of the most popular is the Louvain

method, an algorithm which computes the communities, then the

induced graph – where each node is a community – then the

communities of this graph, until a maximum in modularity is

reached. This method is very efficient since the complexity is

numerically estimated to be O(m) [25] and it gives accurate

results. We used the software package available at [33]. However,

this cannot be used straightforwardly when the null model is the

one of Eq. (3). Since the probability needs explicitly some

geographical coordinates, computing the induced graph is

meaningless, because one cannot associate each node (community)

with spatial coordinates.

Instead, when using the null model of equation Eq. 3, we choose

a simulated annealing method. The simulated annealing, based on

a physical process used to change the properties of glass or metals

in the industry, is typially used to find a minimum (or maximum)

of a non monotonic multi-dimensional function. It is based on a

random walk in the phase space: at each step, one changes slightly

the system (here for instance, changing the assignment of a node to

a community) and see if the function to be optimized (the

‘‘energy’’) has decreased or increased. Given that we look for a

minimum here, we always accept the new state in the first case

(decrease), and randomly choose if we accept the new state in the

latter case (increase). The most widely chosen probability of

acceptance is usually of the form e{dE
T , where dE is the change in

the function between the new and the previous state, and T is a

parameter called temperature, in analogy with the physical

process. The simulated annealing algorithm itself consists in a

progressive decrease of T , so that the system first explores big wells

of energy, then progressively gets trapped in deeper, narrower

wells. The algorithm gives accurate results but needs much more

time to converge than the previous methods. As a final comment,

when applying the modularity partition (with the Louvain method

or with the simulated annealing) we considered the undirected

version of the networks. As mentioned above, air traffic networks

are highly symmetric and therefore the error should be small.

The last method of community detection we use is called

OSLOM – for Order Statistics Local Optimization Method [26].

Its general principle is the following. Using the NG null model

presented in the standard definition of modularity, the authors use

a fitness function – based on the probability that an external node

to a community has a given number of neighbors within this

community – to assess the statistical significance of each

community. More precisely, each external node is ranked

following this fitness function, and the algorithm tests the

likelihood of the score, with the given rank of this node against

the null model. This procedure has several benefits. Since this

optimization is local, i.e. made independently for each community,

the result can be a partition with overlapping clusters. In our

analysis we found very few nodes belonging to two or more

communities, and they have typically small degree, strength, or

centrality. To simplify our analysis we assigned them randomly to

one of the communities. Moreover, the method can be used as

refinement to other methods (Infomap, modularity), because one

can give to the algorithm an existing partition as input. The

method’s complexity itself cannot be exactly computed, but

numerical results shows that it is close to O(n). The package is

available at [34].
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Assessing the robustness of communities
When performing community detection in networks it is

important to assess the robustness of the obtained partition. In

fact, community detection algorithms give always an output, even

when the investigated network has no community structure. The

output is not necessarily a partition but it might be a unique

community. In both cases, one needs to perturb the system and

test whether the partition is robust with respect to this

perturbation.

There are different ways of assessing the robustness of a

partition. As suggested for example in Ref. [28], the robustness of

a partition is usually assessed by sweeping a resolution parameter,

changing the (random) optimization, or by slightly perturbing the

graph structure and measuring the change in the outcomes, to

assess the robustness of the outcomes of each individual algorithm

(see also [35,36]).

As mentioned above, in this paper we include the multi-

resolution modularity in our detection methods. The presence of

plateaus in the number of detected communities as a function of

the resolution parameter c can therefore be considered as a

robustness analysis (see also [28]).

Moreover we also use a direct test of robustness obtained by

perturbing the graph structure. Following [36], given a network

and an initial partition (given by a method), we create N~100
replicas of the network by randomly adding +10% to the weight

of each link. We then compute the adjusted, normalized mutual

information (see next Section) between each of the replicas and the

initial partition. Then we define robustness as the average of this

value over all replicas. Thus, a score close to 1 for robustness

indicates that the communities found by the given method are a

real structure of the network. On the contrary, if the score is low,

then the communities found can be viewed as computational

artifacts.

Finally, it is important to notice that for our specific system we

have one network per day. Since the community structure of the

airspace should not change significantly from one day to the next,

comparing partitions of different days can be considered another

method of performing robustness analysis. In fact, given a type of

network and an algorithm, if the detected communities are similar

across different days, we can consider this result in support of the

robustness of the identified communities.

In conclusion, we perform three robustness tests: multi-

resolution modularity (by detecting the plateaus), graph perturba-

tion (by computing the Mutual Information over replicas), and

comparison of partition across days (by computing the standard

deviations over days with existing partitions).

Metrics for comparison of partitions
In order to compare the partitions given by the different

algorithms, we used two different metrics. The first one is called

the Rand index (RI) [37] and is computed in the following way.

Given two different partitions P1 and P2 of the same set and a pair

of elements in this set, there can be four cases: a) the elements are

in the same community in P1 and P2, b) they are in different

communities in P1 and P2, c) they are in the same community in

P1 but in different ones in P2, and d) they are in the same in P2

but not in P1. The Rand index is simply the number of

occurrences of the two first cases a and b over the total number

of possibilities. The Rand index ranges between 0 and 1.

The second metric is the mutual information (MI). The mutual

information between two random variables X and Y is

I(X ,Y )~
X

y

X
x

p(x,y) log
p(x,y)

p(x)p(y)

� �
,

where p(x) and p(y) are the marginal probabilities to have X~x

and Y~y and p(x,y) is the joint probability. The mutual

information is symmetric. This definition can be used to compare

partitions, where X and Y represent the labels of communities in

each partition.

Since these two metrics can have non-zero values for two purely

random partitions, due to the finite size of the sample, we use an

adjusted value for each metric. Moreover, in order to be able to

compare the values for different variables, we normalize both

metrics. Thus, we divided each adjusted metric by their maximum

value. Specifically, given two partitions P1~fC1
1 ,:::,CN1

1 g and

P2~fC1
2 ,:::,CN2

2 g of a set of N elements, A½M� denotes the

adjusted, normalized version of M, with M:MI (mutual

information) or M:RI (Rand index).

Given a null model describing the random partitions,

E½M(P1,P2)� is the expected value of M(P1,P2). The adjusted,

normalized version of M is

A½M�(P1,P2)~
M(P1,P2){E½M(P1,P2)�

Mmax(P1,P2){E½M(P1,P2)� ,

where Mmax(P1,P2) is the maximum value of M, obtained when

the two partitions are identical.

Defining nij~jPi
1\P

j
2j the number of common elements in

communities Pi
1 and P

j
2, ai~

PN2

j~1

nij , and bj~
PN1

i~1

nij , these

maximum values are

Mmax(P1,P2)~
1

2

X
i

ai

2

� �
z
X

j

bj

2

� � !
(RI)

Mmax(P1,P2)~ max H(P1),H(P2)ð Þ (MI),

with H(P)~{
P

x[P p(x) log (p(x)) the entropy of the partition

P.

As a null model for computing the expectation E½M(P1,P2)� we

use an hypergeometric model. Therefore the expected value of the

Rand Index is

E½M(P1,P2)�~

P
i

ai

2

� �P
j

bj

2

� �
N

2

� �

and the expected value of the Mutual Information is

E½M(P1,P2)�~
XN1

i~1

XN2

j~1

Xmin (ai ,bj )

nij~ max (0,aizbj{N)

nij

N
log

N:nij

aibj

� �

|
ai!bj !(N{ai)!(N{bj)!

N!nij !(ai{nij)!(bj{nij)!(N{ai{bjznij)!
:
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After being adjusted and normalized, RI lies between 21 and 1

and MI lies between 0 and 1. The value 0 implies that the two

partitions have no more in common than two random partitions

would have. The value 1 implies that the two partitions are exactly

the same.

In the following we will use RI and MI to compare the existing

and unsupervised partitions in each day. In the Tables we report

the average and standard deviation of these metrics computed

across the 28 days of the investigated AIRAC cycle.

Community characterization
After a network has been partitioned into communities, the next

step is to characterize the nodes composing each community.

Characterization of a community means to identify which

characteristics of the nodes are ‘‘over-expressed’’ [38]. When we

will consider the partition of the network of airports (see Section

‘‘The airport network’’) we will give to each node (airport) an

attribute indicating the country the airport belongs to. Then we

will ask the question of which countries, if any, are over-expressed

in each community.

Let us consider a network where the nodes have all an attribute

L which can take several values fL1,:::,Lng. For each attribute Li,

we want to see if it is over-expressed in a given community C. The

probability of having NC
Li

nodes with attribute Li in a community

C composed by NC nodes under the null hypothesis that elements

in the community are randomly selected is given by the

hypergeometric distribution [38], i.e.

P(NC
Li
jNC ,NLi

,N)~

NC

NC
Li

 !
N{NC

NLi
{NC

Li

 !

N

NLi

 ! :

where N is the total number of nodes. Then the probability that C

has more than NC
Li

nodes with attribute Li is given by

p(NC
Li

)~1{
PNC

Li
k~0 P(kjNC ,NLi

,N). If this probability is below

a given threshold p, then Li is said to be over-expressed in C,

because it is unlikely to find in C such a large number of nodes

with this attribute only by chance. Since we are performing several

tests on the different values of L and on different communities, the

value of p has to be corrected in order to avoid a large number

false positives, because of the multiple tests performed. One way of

dealing with multiple hypothesis tests is to set the threshold to

p=Nt, where Nt is the number of tests. This multiple hypothesis

test correction, known as the Bonferroni correction, is the most

conservative, but other corrections can be found in the literature

[39].

Results

The navigation point network
The navigation point network is the most detailed network we

consider in this paper. To the best of our knowledge, this type of

network has been investigated only in Ref. [19], where some basic

network metrics for the Chinese airspace have been studied.

Before discussing the community detection result, we present some

network metrics for the European case.

Network metrics. The navpoints are defined with a

longitude and a latitude, but without an altitude. As a consequence

they can be used independently by several sectors at different

altitude. Thus, a navpoint cannot be considered as a single entity/

node in terms of the network. On the other hand, the structure of

the airspace has an interesting property which is of use here.

Indeed, three phases are usually defined for trajectories of flights:

the take-off, the en-route, and the landing phase. If one considers

only the en-route part, the corresponding portion of airspace

becomes much simpler. At high altitudes, the navpoints are shared

only by one or two sectors stacked vertically, and these sectors

have often the same 2D boundaries. Thus, we chose to consider

only the upper part of all the trajectories, cutting them below

24,000 feet – the value considered to indicate the end of the takeoff

phase or the beginning of the landing phase. Moreover during

takeoff and landing flights are often allowed to use ‘temporary

navigation points’’ i.e. to deviate also significantly from the

navpoint network, in order to allow a better control of the high

traffic around airports. This way, navpoints are contained in only

one or two sectors and are meaningful entities.

Based on these trajectories, we build the navpoint network.

Each of them is a node and a link exists if at least one flight goes

from one to the other in the given time-frame (one day). The link is

weighted with the number of flights. For the whole ECAC space,

the network has around 6,000 nodes, and the 21,000 flights per

day create 12,000 edges. The distribution of degree and strength

of the navpoint network are presented in Fig. 1. The distribution is

quite stable in different days and it is very close to an exponential.

This is an expected behavior, since this network is strongly

constrained geographically. Indeed, an aircraft cannot skip many

navigation points to go from one point to another, and is bound to

travel through geographical neighboring points.

Communities. We now consider the communities formed by

the traffic on the navpoint network. Specifically, our aim is to see if

the bottom-up clusterizations made by the algorithms are

consistent with the top-down design which led to their creation.

Even though the details of the partitions depend obviously on the

traffic demand, they are not at the root of the design. Instead, by

using unsupervised clustering, we do not have any prior on the

partition, other than the boundaries of the ECAC space. In this

sense, this approach is complementary to the existing top-down

‘‘expert’’ partitioning and can give insights on how to improve it.

We use the different methods presented in Section ‘‘Methodology’’

to generate the partitions and compare them with the existing

partitions based on the NA and the ACC (see Information S1) by

using the metrics presented in Section ‘‘Metrics for comparison of

partitions’’.

Fig. 2 shows one of these partitions, obtained with the OSLOM

algorithm. The clusters are clearly geographical, with almost no

geometrical overlap between them. For this algorithm, commu-

nities are much smaller than the national scale, but their

boundaries seem roughly consistent with the national boundaries.

We perform an extensive community detection by using the

three algorithms described in Section ‘‘Methodology’’ for each of

the 28 days of the AIRAC cycle. In the case of the modularity-

based algorithms we consider PNG
ij ~kikj=2m. The average

number of communities for each algorithm is reported in

Table 1. We notice that the number of communities depends

significantly on the adopted algorithm. The coarsest level of

description is given by the modularity maximization, with only

42:8 clusters, even less than the number of countries. OSLOM

gives more than three times this number (150:0), and twice the

number of ACCs (88:5). Finally, Infomap gives around 600
communities, a very large number, comparable only to the

number of sectors. The tendency of Infomap to give small

communities when their structure is non-clique like, like in

geographically embedded networks, has been explained in Ref.

[40]. In the second line of Table 1 we show the minimum number
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of communities (induced or existing) which involve 90% of the

nodes in the network. These Figures indicate that a fraction of the

communities ranging from 30% (ACC) to 50% (OSLOM)

contains only 10% of the nodes. These are therefore very small

communities. It is interesting to note that such small communities

are present also in the existing partitions, indicating that there is a

significant heterogenity in the size of the existing communities.

It is clear that different algorithms are able to identify

communities at different spatial scales. The multi-scale structure

of the navpoint network is well captured by the multi-resolution

modularity. Panel (a) of Fig. 3 shows, as a function of c, the

number of communities identified by the maximization of the

modularity Qc of Eq. 2 on May 6, 2010. We also show the number

of communities averaged on the 28 days of the AIRAC cycle, for

Figure 1. Distribution of degree (left) and strength (right) in the navigation point network in a semilog scale. Each color corresponds
to a different day of the AIRAC cycle. The mean degree is 3.88 with standard deviation 3.0, with min and max respectively equal to 1 and 29. The
mean strength is 87.0 with standard deviation 118.7 and min/max equal to 1 and 1338. The dashed line indicates the best exponential fit of the
average curve.
doi:10.1371/journal.pone.0094414.g001

Figure 2. Communities obtained with the OSLOM algorithm on the network of navpoints for May 6, 2010. Each color corresponds to a
different community.
doi:10.1371/journal.pone.0094414.g002
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each value of c. Added to this, for each obtained partition we

computed the minimum number of communities which include

90% of the nodes. We also show the average of this number on the

plot. It is important to notice that the maximization of Qc

produces very clear plateaus corresponding to a number of

communities equal to &40, 300, and 2,000. While the first is easily

comparable with the number of NAs, the other two could

represent control units of the airspace on a smaller scale. Moreover

there is probably a small plateau corresponding to &70
communities, and this number is very close to the number of

ACCs (see also below). Finally notice that the error bars, taken as

standard deviations of the number of communities in the AIRAC

cycle, are very small, indicating that the communities are very

robust.

In order to compare the multi-resolution modularity partitions

with the other three partitions, we select the values of c that give

partitions maximizing the MI with ACC and NA partition. These

correspond to c~2:5 and c~0:099, respectively. Note that these

values correspond to the average beginning of the plateaus. Hence,

c~0:099 for instance corresponds to the same plateau than c~1.

So these values of c should be considered as labels and have no

intrinsic importance. From the last two columns of the bottom part

of Table 1, we observe that the number of communities of these

partitions are close to the real ones, even if systematically

underestimated.

To make the comparison between existing and unsupervised

partitions more quantitative, we use the two metrics described in

Section ‘‘Metrics for comparison of partitions’’. The partitions

have been computed over the 28 days of the AIRAC cycle and the

MI and RI averaged on this period. The results of this systematic

comparison between partitions are given in Table 2. We find that

the Infomap partition is the most different with respect to the

existing partitions. This result is somehow expected, because the

Infomap communities are many more and smaller than those

obtained with the other algorithms. The other two induced

partitions are roughly equally close to the existing partitions. More

precisely, OSLOM is closer to the ACCs partition and modularity

to the NA partition, as expected from the number of communities.

By using the multi-resolution modularity we are able to achieve

partitions which are even closer to the existing partitions. As

Table 2, the partition obtained by maximizing Qc~2:5 is the closest

to ACC partition, both considering MI and RI. Similarly the

partition obtained by maximizing Qc~0:099 is the closest to NA

partition, both considering MI and RI.

The issue of the robustness of the obtained partitions is already

addressed for the multiresolution modularity, because we find

clear plateaus. However, we have performed the randomization

experiments described in Section ‘‘Assessing the robustness of

communities’’ for the other partitions (Infomap, etc.). The results

are shown in the bottom part of Table 2. We observe that all the

methods give quite high values of robustness, strongly suggesting

that the detected partitions are robust to perturbations of the

amount of traffic in the network. This result is also supported by

the relatively small standard deviation of the number of

communities, MI, and RI obtained by considering the different

28 days of our sample. The Table also shows that Infomap gives

the most robust partitions, and this is maybe due to the small size

of its communities. The partitions with the other methods have

similar robustness properties. Finally, we notice that the standard

errors shown in Tables 1 and 2, for the number of communities

Figure 3. Number of communities in the three networks
obtained with multi-resolution modularity as a function of
the resolution parameter .c Panel (a) refers to the navpoint network,
panel (b) to the sector network, and panel (c) to the airport network.
The blue line refers to one specific day, namely May 6, 2010. The black
circles are the average number of communities and the red circles are
the average minimum number of communities containing 90% of the
nodes. Averages are taken over the 28 investigated days. Error bars are
standard deviations. The horizontal black lines are the average number
of communities in the existing partitions. Note that plots in panels (a)

and (b) are not displaying the last plateau, corresponding to the case
where each node is in its own community.
doi:10.1371/journal.pone.0094414.g003
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but also for their metrics comparing the partitions, are small

compared to the means. This means that the partitions are quite

robust across days, thus providing another indication of the

robustness of the unsupervised partitions.

All these results underline the difference from the bottom-up

approach with an unsupervised partition based on the traffic and

the top-down approach of the real construction of the existing

partitions. The next Section deals with the same idea at a coarser

level: given some predefined partitions of the sectors, we ask how

these clusters can be aggregated based on the traffic from one

sector to the other.

The sector network
The sectors are the smallest operational pieces of airspace and

as such are controlled by a pair of controllers. One in particular is

in charge of the interaction with the other neighboring sectors.

Thus, building the network of sectors, where nodes are sectors and

links are built from traffic data between two sectors, gives the finest

description of the operative European airspace. To the best of our

knowledge, this network has never been studied in the literature.

As for the navpoint network, we present first some basic network

metrics and then we move to the community detection problem.

Here, we used the full network of sectors, without cutting the

trajectories in altitude, and without discarding the airports areas.

Moreover since sector are dynamic entities that can be split and

merged during that day, responding to traffic variation, and

because we want to use all the traffic data and not just a snapshot

at a given time, we decided to include in the network all the sectors

active during each day. For instance, if a sector is sometimes split

in two parts, our network will contain three nodes: one for the

sector and one for each part.

Classic metrics. The number of active sectors in Europe

varies from 300 (around midnight) to more than 700 during the

day. In order to build the network, we considered that there is a

link between two nodes if a flight goes directly from one sector to

the other in the considered time window. The links are also

weighted as before, i.e. by using the number of flights.

An example of the sector network of the French airspace is

given in Fig. 4. For the whole Europe, the network has around

6,500 links per day. The degree distribution is displayed in the left

panel of Fig. 5. As one can see, the distribution displayed is distinct

from a power law, but also from an exponential. We notice here

the presence of very few hubs (mostly German sectors), i.e. central

sectors which redistribute the traffic around Germany in many

other sectors. The strength distribution (not displayed here, but

available upon request) is a bit closer to an exponential. The

betweenness centrality, shown on the right panel of Fig. 5, does not

seem to be a power law nor an exponential. In fact, the network is

far from being homogeneous and the standard deviations

computed within a day over the nodes are of the same order or

greater than the average degree, strength, or betweenness, which

means that the distributions are very wide.

These characteristics and the fact that the distribution is

different from a power-law distribution, are the results of

geographical constraints. Indeed, even if the network is not

exactly planar, there is no ‘‘short-cut’’ between far away sectors.

An aircraft has to go through a sequence of nodes to reach the

destination. This implies a node is more likely to be connected to

its geographical neighbors, which are of course of limited number.

Communities. We use the same methods described earlier

for the detection of communities in the network of sectors and we

compare them with three existing partitions, namely the ACCs,

the NAs, and the FABs (see maps of Figs. S3, S4, and S5 in the

Supporting Information).

Fig. 6 shows the result of the Infomap method on this network.

The detected communities are typically much smaller than the

typical size of a country. However it is interesting to notice that

they are not transnational either, and thus they seem to partition

the national airspaces themselves. Moreover, some known

specificities of the European airspace are well recovered. For

example, the two big communities of Ireland and North United

Kingdom are present, as well as the four ACCs of Italy (see Fig. S5

in Supporting Information).

Table 3 gives the number of communities for each partition,

averaged across days. Since the number of communities is related

to their typical size, we notice that the average size of the

communities is quite different from one algorithm to the other.

The modularity method, due probably to resolution effects (see

Section ‘‘Methodology’’), gives the biggest clusters and their

numbers are close to the number of FABs. On the contrary, the

OSLOM and Infomap give smaller clusters, of the typical size of a

country. These considerations, based on the sole number of

communities, are clearly not sufficient to compare different

partitions, because, as we can see from Fig. 6, the community

sizes are quite heterogeneous over Europe. In the second row of

Table 3 we show the minimum number of communities

(unsupervised or existing) that involve 90% of the nodes in the

network. As for the navpoint network, also here there are very

Table 2. Comparisons of the partitions of the navpoint network by using the Rand index, the Mutual information, and the
robustness.

Rand Index Infomap Modularity OSLOM Mod. max. (cmax)

ACC 0.078+0.003 0.28+0.02 0.28+0.02 0.29+0.03 2.5+0.5

NA 0.043+0.002 0.30+0.03 0.23+0.02 0.30+0.03 0.099+0.005

Mutual Inf. Infomap Modularity OSLOM Mod. max. (cmax)

ACC 0.37+0.004 0.57+0.01 0.59+0.01 0.61+0.01 2.5+0.5

NA 0.32+0.003 0.57+0.01 0.51+0.09 0.57+0.01 0.099+0.005

Robustness Infomap Modularity OSLOM Mod. max. (cmax)

ACC 0.90+0.01 0.79+0.01 0.82+0.01 0.75+0.04 2.5+0.5

NA 0.78+0.01 0.099+0.005

The numbers are the average values, over the 28 days of the AIRAC cycle, between the partitions and the error bars are standard deviations. Numbers in boldface refer
to the partition that maximizes the corresponding metric.
doi:10.1371/journal.pone.0094414.t002
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Figure 4. Example of the sector network for the French airspace. Each node represents a sector, the thickness of the links between them is
proportional to the number of flights passing directly from one sector to the other. Sectors which are exactly on top of each other are a bit shifted to
see them.
doi:10.1371/journal.pone.0094414.g004

Figure 5. Distribution of degree (left) and node betweenness centrality (right) of the sector network of the European airspace in
semi-log scale (insets: in log-log scale). Each color corresponds to a different day of the AIRAC cycles. The mean degree of the network averaged
on 28 days is 11:4, with a standard deviation equal to 0:3. The intraday standard deviation is however very large, being equal to 11:5+0:2. The
network is thus heterogeneous, even if not scale free. The corresponding values for strength are 194:3+9:4 for the mean and 356:5+14:8 for the
standard deviation in one day. Finally the betweenness centrality displays a averaged mean degree of 2:010{3+0:1110{4 and a standard deviation
of 7:2+0:43.
doi:10.1371/journal.pone.0094414.g005
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small communities. However, the number of small communities is

here smaller than in the previous case. This might be an indication

of the fact that sectors are more inter-connected than navpoints.

The only obvious exception is given by the NA case, where now

almost 50% of communities contains 10% of nodes while such

percentage was 30% in the case of the navpoint network.

As for the navpoint network, we find the values of c in the multi-

resolution modularity such that the obtained partition has the

maximum MI with the three existing partitions. We obtain c~4:5,

c~2:6, and c~0:5 as the values that maximize the MI with ACC,

NA, and FABs, respectively. The number of communities of these

partitions are quite close to the real one, especially when

considering communities accounting for more than 90% of the

nodes. Also in this case, the analysis of the number of communities

obtained by maximizing Qc as a function of the resolution

parameter c reveals the multi-scale structure of the sector network.

Panel (b) of Fig. 3 shows that the number of communities has clear

plateaus corresponding to a number of communities equal to &12
and 120, very close to the number of FABs and ACCs. Like for the

navpoint network, the panel does not show the last plateau,

corresponding to each node in its on community. On the other

hand no plateau is observed for a number of communities close to

the number of NA, suggesting that the division in national

airspaces has no motivation in terms of traffic, but only political

ones. Indeed, a small plateau is observable between the main ones,

but very close to the first one (FAB).

A more detailed comparison between all these partitions is

presented in Table 4. As before, for multi-resolution modularity

we select the three values of c that maximizes the mutual

information with the three existing partitions. A more mixed

pattern emerges for sectors. For ACC, the closest partition is the

one generated by OSLOM (according to RI) or Infomap

Figure 6. Community detection in the European network of sectors using the Infomap algorithm. The network is computed on the May
6, 2010. Each color corresponds to a different community.
doi:10.1371/journal.pone.0094414.g006

Table 3. Average number of communities in the network of sectors and average minimum number of communities containing
90% of the nodes.

Existing part. ACC NA FABs

Nc 115.4+2.0 49.5+0.7 12.0+0.

N0:9
c

58.7+0.8 24.0+0. 9.0+0.

Supervised part. Inf. Mod. OSLOM Mod. max. Mod. max. Mod. max.

(cmax~4:5) (cmax~2:6) (cmax~0:5)

Nc 66.7+3.3 12.6+1.1 49.9+3.0 86.9+45.6 24.0+17.8 13.0+1.3

N0:9
c

42.9+3.0 11.1+0.7 39.5+2.5 62.4+31.9 18.5+12.2 11.4+0.7

The top part refers to existing partitions and the bottom part to the unsupervised partitions. Results were obtained averaging over 28 days, and the errors bars are
standard deviations. The number of ACCs is not stable because some of them are not used during the period.
doi:10.1371/journal.pone.0094414.t003
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(according to MI). Modularity or multi-resolution modularity give

instead the closest partition to NA and FABs according to both

metrics. In the case of FABs the modularity and multi-resolution

(c~0:5) partitions have a similar average number of communities

with respect to FABs. However the MI value is relatively small in

both cases. Therefore, it is worth emphasizing that their

boundaries are very different from the FABs, and this suggests a

possible alternative design to the FABs which preserves approx-

imately the total number of communities.

As for the navpoint network, the presence of plateaus for multi-

resolution modularity, the values of ‘‘randomizing robustness’’

(bottom part of Table 4), and the small standard errors reveal the

robustness of the partitions. Moreover, as before, Infomap

provides the most robust communities.

In conclusion, the partitions inferred by the different methods,

although relatively close to the existing partitions of the European

airspace, are distinct from them. A new design for the European

airspace based on these unsupervised detected partitions could be

more optimized because the new ACCs or FABs would be more

densely connected inside and have less interface (links) with the

adjacent ones. It could also help devising dedicated coordination

tools and procedures by identifying the boundaries with high

traffic exchange volumes.

The airport network
The last network we consider is the airport network. As

explained in the Introduction, this is probably the most studied air

traffic network, also for its relation with socio-economic phenom-

ena, such as passenger mobility and epidemic spreading. For this

reason we do not present a detailed analysis of the network

metrics. In accordance with previous studies [2–14] we found that

the distributions of degree and strength have a power law tail. This

reveals the presence of hubs, i.e. nodes with a high degree and a

high strength which shorten significantly the paths on the network

(in terms of number of nodes). This feature is also revealed when

one studies the relationship between the betweenness centrality

and the degree. A summary of the empirical analysis of the airport

network obtained from the data investigated here can be found in

Ref. [14].

If the network metrics of the airport network have been

extensively studied, to the best of our knowledge there are few

studies [5,18] which have considered the community structure of

this network. Following the previous analysis on sectors and

navpoints, we study here the relationship between this structure

and existing division of airspace. We will see that the interpretation

of the communities in the airport network is somehow different

from the previous one concerning sectors and napvoints.

Communities. We consider the network of airports. In this

graph, airports are nodes and a link between two of them exists if

the two nodes are connected (in the investigated time window) by

one or more flights. The link is then weighted according to the

number of flights travelling between the two nodes. Here the

European network has between 480 and 510 nodes, depending on

the day, and around 6,300 directed edges.

An example of a partition obtained with the modularity method

is presented in Fig. 7. As one can see, the typical size of a

community is supranational, roughly the same as a FAB. The

communities are mainly geographical with the majority of nodes

close to each other in a single community. Moreover, the borders

of the communities seem to be more or less consistent with the

national borders. Still, some nodes are far away from their

communities.

The number of communities for each algorithm is presented in

Table 5. The modularity algorithm gives the biggest partition,

even bigger than the FABs. Instead, OSLOM and Infomap give

between twice and thrice this number, but still less than the

number of NAs. In the second line of the table we show the

minimum number of communities (induced or existing) which

include 90% of the nodes in the network. As for the sector

network, we can see that 50% of communities contains 10% of

nodes in the case of the NA partitioning. When the value of c of

the multi-resolution modularity is chosen in order to maximize MI

with the two existing partitions, one obtains unsupervised

partitions with a number of communities quite close to NA (for

c~2:7) and to FABs (for c~1:2). Panel (c) of Fig. 3 shows that the

number of airport communities as a function of c has clear

plateaus corresponding to a number of communities equal to &10
and 35, very close to the number of FABs and NA.

Table 6 shows a summary of the comparison between

unsupervised partitions and existing partitions. In all cases the

multi-resolution modularity outperforms the other methods in

terms of the similarity with the existing partitions. The modularity

Table 4. Comparisons of the partitions of the sector network by using the Rand index, the Mutual information, and the
robustness.

Rand Index Infomap Modularity OSLOM Mod. max. (cmax)

ACC 0.38+0.03 0.21+0.02 0.42+0.03 0.25+0.03 4.5+1.2

NA 0.27+0.02 0.37+0.03 0.32+0.03 0.36+0.04 2.6+0.8

FAB 0.17+0.01 0.32+0.03 0.20+0.02 0.32+0.03 0.5+0.1

Mutual Inf. Infomap Modularity OSLOM Mod. max. (cmax)

ACC 0.58+0.01 0.39+0.01 0.58+0.01 0.47+0.02 4.5+1.2

NA 0.52+0.01 0.53+0.02 0.55+0.02 0.58+0.02 2.6+0.8

FAB 0.40+0.01 0.54+0.02 0.43+0.01 0.54+0.02 0.5+0.1

Robustness Infomap Modularity OSLOM Mod. max. (cmax)

ACC 0.90+0.02 0.78+0.02 0.67+0.06 0.74+0.04 4.5+1.2

NA 0.74+0.03 2.6+0.8

FAB 0.77+0.03 0.5+0.1

The numbers are the average values, over the 28 days of the AIRAC cycle, between the partitions and the error bars are standard deviations. Numbers in boldface refer
to the partition that maximizes the corresponding metric.
doi:10.1371/journal.pone.0094414.t004
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gives competitive outcome for FABs because the optimal value of c
is 1:2, which is very close to 1 (and both values belong to the same

plateau, see Fig. 3c).

To have a more precise idea of the partitions and see if they

adhere to the FABs partition, we study the over-expression of

nationalities in the communities of each partition. The results are

shown in Tables 7 and 8. The communities detection highlights

some of the main features of the future FAB partition. UK and

Ireland, as well as Spain and Portugal, are always in the same

community, which is a FAB. The northern countries are also

together, although they are not exactly aggregated the same way in

all partitions. The central Europe is more problematic. In the

current design, France and Germany are in the same FAB (see Fig.

S5). However from Fig. 6 and the corresponding one for OSLOM

communities it is clear that France and Germany are in separated

communities. In the over-expression analysis of Tables 7 and 8

France and Germany are in fact never together, with the exception

of Infomap, which has a very large community. Finally, while Italy

and Greece are together in the same FAB, there is no partition

where they are in the same community. In fact, probably due to its

geographical location, Italy is in its own community according to

two unsupervised partitions (Modularity and OSLOM). On the

contrary, it is striking to see that Greece can be in the same

community as much as Romania and Turkey are together with

Figure 7. European network of airports on May 6, 2010. Each circle is an airport, its radius proportional to its strength. Each community,
detected with the modularity method, is represented by a different color. The links between nodes have been omitted for readability.
doi:10.1371/journal.pone.0094414.g007

Table 5. Average number of communities in the network of airports and average minimum number of communities containing
90% of the nodes.

Existing part. NA FABs

Nc 42.0+0. 12.0+0.

N0:9
c

21+0.4 9.1+0.3

Unsupervised Inf. Modularity OSLOM Mod. max. (cmax~2:7) Mod. max. (cmax~1:2)

part.

Nc 24.5.+3.9 9.4+1.2 16.3+2.7 31.9+7.0 16.9+7.2

N0:9
c

12.0.+1.8 7.2+0.4 10.2+1.0 17.3+3.1 10.4+2.9

The top part refers to existing partitions and the bottom part to the unsupervised partitions. Results were obtained averaging over 28 days, with standard deviations
taken as error bars.
doi:10.1371/journal.pone.0094414.t005
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Ukraine, whereas Greece and Turkey themselves are never in the

same one. This might be due to the diplomatic issues between the

two countries. Moreover, the community aggregating Turkey,

Azerbaijan and Georgia is visible in all partitions. This community

could be a good choice for a FAB if these countries were willing to

officially declare one.

The In fomap par t i t i on i s a l so  v e ry  d i f f e r en t  f r om

the others. Indeed, it shows a massive community,

a g g r e g a t i n g m o s t c o u n t r i e s i n w e s t e r n E u r o p e ,

including Ireland, UK, France, Benelux, Germany, Spain,

Portugal, Italy, and Switzerland, as well as countries in central

Europe, including Austria, Croatia, Slovakia, Czech Republic,

Slovenia, Hungary, and Poland. The community is in fact so big

that some of these countries, even if they are totally included in it,

are not over-expressed: the probability to find an airport of a given

country within the community or in the whole Europe is almost

the same. Only a few countries – Greece, northern countries,

Romania, Turkey – are not in this cluster, as well as a few western,

small airports (less than 10). The massive community is present in

several days of the AIRAC cycle, but not everyday.

Note also that, like for the other networks, every measure of

robustness, in particular those shown at the bottom of Table 6,

indicate that the obtained partitions are indeed robust.

All these results seem to validate the general idea of the FABs,

even if their actual boundaries could be different if based on the

unsupervised community detection. However, the whole idea of

Table 6. Comparisons of the partitions of the airport network by using the Rand index, the Mutual information, and the
robustness.

Rand Index Infomap Modularity OSLOM Mod. max. (cmax)

NA 0.17+0.07 0.33+0.03 0.37+0.04 0.50+0.03 2.7+0.7

FAB 0.22+0.05 0.41+0.03 0.36+0.04 0.42+0.02 1.2+0.3

Mutual Inf. Infomap Modularity OSLOM Mod. max. (cmax)

NA 0.41+0.05 0.42+0.02 0.45+0.04 0.61+0.02 2.7+0.7

FAB 0.47+0.04 0.53+0.02 0.50+0.03 0.55+0.02 1.2+0.3

Robustness Infomap Modularity OSLOM Mod. max. (cmax)

NA 0.97+0.03 0.88+0.04 0.81+0.04 0.74+0.04 2.7+0.7

FAB 0.81+0.08 1.2+0.3

The numbers are the average values, over the 28 days of the AIRAC cycle, between the partitions and the error bars are standard deviations. Numbers in boldface refer
to the partition that maximizes the corresponding metric.
doi:10.1371/journal.pone.0094414.t006

Table 7. Over-expressions of nationality in different partitions.

Modularity OSLOM

Id Size Country Frac. Id Size Country Frac.

0 114 Finland 0.94 0 78 Germany C. 0.56

Denmark 1.0 Austria 1.0

Norway 1.0 1 77 UK 0.88

Sweden 0.95 Ireland 1.0

1 97 UK 0.90 2 73 Finland 0.94

Ireland 1.0 Sweden 0.90

2 90 Germany C. 0.69 3 45 Spain 0.73

3 59 Spain 0.85 Portugal 0.77

Portugal 0.92 4 44 Turkey 0.92

4 49 Greece 0.97 6 41 Norway 0.76

Romania 1.0 Denmark 0.5

5 38 Turkey 0.92 7 33 Italy 0.72

6 33 Italy 0.86 8 27 Greece 0.79

9 18 Romania 0.73

Over-expressions of nationality in different partitions: for each partition, we
display the ids of the communities, their sizes, the countries over-expressed
within it and the fraction of the countries’ airports included in the commu-
nities. These partitions have been obtained for May, 6 2010.
doi:10.1371/journal.pone.0094414.t007

Table 8. Over-expressions of nationality in different partitions
(second part).

FABs Infomap

Id Size Country Frac. Id Size Country Frac.

0 90 Germany C. 1.0 0 246 Germany C. 0.97

France 1.0 Spain 1.0

1 69 Greece 1.0 France 0.90

Italy 1.0 Italy 1.0

2 66 Norway 1.0 1 38 Turkey 0.94

Finland 1.0 2 30 Sweden 0.72

3 58 UK 1.0 3 29 Greece 0.93

Ireland 1.0 4 20 Norway 0.44

4 47 Denmark 1.0 5 17 Romania 1.0

Sweden 1.0 6 14 Norway 0.31

5 46 Spain 1.0 7 12 Finland 0.75

Portugal 1.0 8 10 Norway 0.22

6 41 Turkey 1.0 9 9 Ukraine 0.78

7 22 Croatia 1.0 10 9 Denmark 0.88

Austria 1.0 11 8 UK 0.16

8 18 Romania 1.0 12 8 Portugal 0.62

9 13 Poland 1.0 13 7 Estonia 1.0

13 Lithuania 1.0 14 5 Serb. & Mont. 0.8

10 10 Ukraine 1.0

11 6 Serb. & Mont. 1.0

Second part of Table 7.
doi:10.1371/journal.pone.0094414.t008
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inferring the FABs based on the communities of airports raises

some issues. First, in our analysis, airports are different from

sectors or navigation points because they do not represent a part of

the airspace where the trajectories are managed. Of course, as a

first approximation, one can consider that the traffic between

airports give the main flow for the airspace. Second point, the

airports can have long range interactions, and thus be a priori in

the same community, while in two different countries which might

not be in the same FAB. Hence, it is important to highlight these

long range interactions and see how they are interfering with the

rather ‘‘compact’’ communities we found in the network of

airports.

Extracting the role of distance in the airport network. In

transportations systems like the airspace, nodes tend to be more

connected to their geographical neighbors, just because they are

close to each other. But of course there are other non local causes

to the formation of communities. For instance, Ryanair has

dedicated airports all over Europe, which are more likely to be

connected. Hence, Beauvais in France (close to Paris) or Ciampino

in Italy (close to Rome) are more likely to be connected to each

other than to Fiumicino or Charles de Gaulle, respectively.

A way of capturing this phenomenon and avoiding the distance

bias has been explained in Section ‘‘Methodology’’ and is based on

the method described in Ref. [32]. The idea is to maximize

modularity by using a null hypothesis that takes into account the

geographical distance. From our analysis we find that the

deterrence function f (d) of Eq. 3 is unimodal, being zero for

small distances and reaching a maximum around d~400 km and

decaying slowly to zero. Since the estimation of the deterrence

function depends on the number of bins used for d, we choose 100

bins since this value gives a good tradeoff between a too coarse

description, obtained with few bins, and a too noisy one, obtained

when the number of bins is too large.

The result of this community detection is displayed in Fig. 8. As

a point of comparison, one could consider the partition of Fig. 7,

which shows the modularity partition (with the usual null model) in

the same day. The difference between the two Figures is thus only

in the null model (and the maximization algorithm). The picture

with the geographical null model is very different. The commu-

nities are much less geographically constrained and long range

interactions between airports are enhanced. For instance, the

European airports operated mainly by Ryanair are now in the

same community (displayed in salmon on the map). These

interactions between these airports cannot be explained by

geographical distance between them but only by the fact that

they are operated by the same company. This community is not in

the previous Fig. 7 and has been detected only by removing the

distance bias.

In the same line, we can notice the specialization of airports

surrounding big cities. Paris Orly for instance is in the same

community than many Spanish airports, which is consistent with

its actual role. Paris Charles De Gaulle is more linked to the

central and eastern Europe and Beauvais, as noticed before, is

operated only by Ryanair and is in its network. Around London

each airport is also in a different community. Luton is more linked

to other English airports, whereas Heathrow is linked to Italy and

Portugal, Gatwick and the London City Airport to airports located

Figure 8. Communities of the airport network obtained by maximizing the modularity with the spatial null model of Eq. (3). The
maximization is performed by using a simulated annealing process. Each circle is an airport, its radius proportional to its strength.
doi:10.1371/journal.pone.0094414.g008
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in France and Switzerland mainly, and Stansted is in the Ryanair

network.

Geographical clusters did not disappear completely. Spain,

United Kingdom, Italy, Greece and Scandinavian countries have

their own community, despite the spatial null model. This might

be due to national characteristics (language, common firms, etc.)

which are not directly concerned by distance. These additional

characteristics can be embodied in the formation of dedicated

regional airlines which in turn create these local structures.

Moreover, the presence of bottlenecks, observed for instance in the

northern countries, can explain the clusters. Indeed, starting from

a small airport, one has to go through Stockholm, Oslo or Helsinki

to exit the area. Hence, regardless of the distance, all these airports

are in the same community.

In conclusion the unsupervised detections of communities show

two distinct characteristics of the network of airports. First, it has a

strong geographical basis, with airports more likely to be in the

same community if they are close to each other. Moreover, the

typical size of communities and also the geographical boundaries

are consistent with the future partition of the European airspace.

Secondly, the airports show some long distance interactions, which

are not explained by geographical proximity, and cannot be

strictly linked to the operational partitions.

Another potential application to these detections may be to

build direct dedicated communication tools between airports that

show a strong ‘‘long-range interaction’’ to smooth and optimize

the coordination – as already being addressed by some existing

SESAR projects.

Conclusions

We have investigated the structure of the ECAC airspace at

different scales: the navigation point scale, the sector scale and the

airport scale. By representing the system at each scale with a

network, we have performed a community detection analysis in

order to detect the groups of elements in the system that have

homogeneous behaviour with respect to the actual air traffic

conditions. Specifically, we have presented results relative to

different unsupervised community detection algorithms that

provide meaningful partitions of the airspace, starting from the

mere knowledge of the actual air traffic flows.

At each scale the community detection algorithms provide

useful insights on the system. Generally speaking, as shown in

Fig. 3, the multi-resolution algorithm is capable of reproducing the

three levels associated to the existing partitions by using different

values of the resolution parameter c. Even if the method identifies

the same number of hierarchical levels as in real data, the

identified communities are often quite different from the existing

ones. Since the unsupervised communities are obtained from the

traffic data, they are a hierarchical partition better reflecting the

use of the airspace. In general, all the obtained partitions seem to

be quite robust. When we compute the partitions over the different

AIRAC days we get a number of communities that is not very

variable over the days. i.e. standard deviations are quite low.

Moreover, the multi-resolution algorithm is able to find a number

of communities which is constant over a certain range of c.

More specifically:

N In the case of the navpoint network, we have obtained that the

modularity partition gives big communities whose size is

comparable to the NAs, while the OSLOM one gives a finer

clusterization, close to the ACCs. It is worth mentioning that

the multi-resolution algorithm with c~2:5 performs quite well

for ACCs and with c~0:099 for NA, both in terms of number

of communities and of MI. In the latter case the partition is the

one obtained with classic modularity, since c~1 and c~0:099
belong to the same plateau. The partitioning obtained by using

the Infomap algorithm is close to reproduce the air traffic

sectors.

N In the case of sector network, the Infomap and OSLOM

partitions are quite close to the NAs, at least in terms on

number of communities. The multi-resolution algorithm with

c~2:6 well reproduces NAs in terms of MI. The multi-

resolution algorithm with c~0:5 well reproduces FABs in

terms of number of communities and it is the best among the

investigated methods in terms of MI. However, it is worth

mentioning that already the modularity partition seems to give

the same results as the modularity partition with c~0:5. The

relatively small value of MI in these two cases would indicate

that the boundaries of the obtained partitions are distinct from

the real FABs ones. This might suggest a possible alternative

design of the FABs, which preserves their total number. The

Infomap also results to be the most robust method.

N For the airport network, the multi-resolution algorithm with

c~2:7 and c~1:2 well reproduces FABs and NAs, respec-

tively, in terms of number of communities, of MI, and of RI.

The Infomap results to be again the most robust method.

When the community detection algorithm takes into account

the geographical constraints, as in Section ‘‘Extracting the role

of distance in the airport network’’, then some long distance

interactions between airports emerge. These are not explained

by geographical proximity, and cannot be strictly linked to

general operational aspects. Rather, they might reveal

strategies operated by specific airlines, such as, for example,

Ryanair. In fact, Ryanair has not a business model based on

large hubs. Rather, flight plans are scheduled without explicitly

considering the presence of connection flights.

All these results underline the difference between the bottom-up

approach with an unsupervised partition based on the traffic and

the top-down approach of the real construction of the existing

partitions. The different algorithms used are therefore able to

capture different features of the airspace organization and, in some

cases, they might provide alternative ways of redesigning already

present pieces of the airspace. The new ACCs, for instance, would

be indeed more densely connected inside and have less interface

(links) with the exterior, which is an added value from an

operational point of view. Another potential application is the use

of these methods to highlight the boundaries (between sectors,

ACCs, NAs, FABs) that require intensive coordination, as they

may deserve dedicated coordination tools and procedures. Also,

the establishment of direct communication links between closely-

connected distant airports, as identified by the community

detection, could be interesting.

The obtained partitions provide alternative ways of designing

the future European airspace. Indeed, it is important to emphasize

that Europe (as well as the US) is moving toward a new scenario of

air traffic management according to an ambitious and long term

project termed SESAR [21] aiming at changing the architecture of

the European airspace based on a new set of paradigms [41]. In

this new scenario cross national control units will be defined and

they will be based more significantly on traffic demand than on

national constraints. In this framework our bottom up approach

for the partitioning of the European airspace with community

detection algorithms could be used to improve the design of this

important transport infrastructure.

We believe also that this approach could be fruitfully adopted in

other types of traffic networks [42].
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Supporting Information

Figure S1 Communities of the navpoint network based
on the national airspaces.

(TIF)

Figure S2 Communities of the navpoint network based
on the control centres.

(TIF)

Figure S3 Communities of the sector network based on
the functional airblocks.

(TIF)

Figure S4 Communities of the sector network based on
the national airspaces.

(TIF)

Figure S5 Communities of the sector network based on
the control centres.

(TIF)

Figure S6 Communities of the airport network based on
the functional airblocks. Each circle is an airport, its radius

proportional to its strength.

(TIF)

Figure S7 Communities of the airport network based on
the national airspaces. Each circle is an airport, its radius

proportional to its strength.

(TIF)

Information SI Existing partitions present in the differ-
ent networks, due to FABs, NAs, and ACCs subdivision.
(PDF)
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38. Tumminello M, Miccichè S, Lillo F, Varho J, Piilo J, et al. (2011) Community

character- ization of heterogeneous complex systems. J Stat Mech 1: P01019.

39. Miller R (1981) Simultaneous Statistical Inference. New York: Springer, 2nd

edition.

40. Shaub MT, Delvenne J-C, Yaliraki SN, Barahona M (2012) Markov dynamics

as a zooming lens for multiscale community detection: Non clique-like

communities and the field-of-view limit. Plos ONE 7: e32210.

41. SESAR (2007) Definition of the future atm target concept - d3; Available:

http://www.sesarju.eu/news-press/documents/d3-atm-target-concept-424.

Accessed 2014 Mar 25.

42. De Montis A, Caschili S, Chessa A (2010) Time evolution of complex networks:

commuting systems in insular italy. J Geogr Syst 13: 49–65.

Multi-Scale Network Analysis of European Airspace

PLOS ONE | www.plosone.org 17 May 2014 | Volume 9 | Issue 5 | e94414

http://www.skybrary.aero/bookshelf/books/1351.pdf
http://www.sesarju.eu/
https://www.eurocontrol.int/ddr
https://www.eurocontrol.int/ddr
http://www.eurocontrol.int/eec/public/standard_page/NCD_nevac_home.html
http://www.eurocontrol.int/eec/public/standard_page/NCD_nevac_home.html
http://www.tp.umu.se/&sim;rosvall/code.html
http://perso.crans.org/aynaud/
http://www.oslom.org
http://www.sesarju.eu/news-press/documents/d3-atm-target-concept-424

