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PACS 46.70.De – Beams, plates, and shells
PACS 46.70.-p – Application of continuum mechanics to structures
PACS 87.16.Ka – Filaments, microtubules, their networks, and supramolecular assemblies

Abstract – Networks of elastic beams can deform either by stretching or bending of their
members. The primary mode of deformation (bending or stretching) crucially depends on the
specific details of the network architecture. In order to shed light on the relationship between
microscopic geometry and macroscopic mechanics, we characterize the structural features of
networks which deform uniformly, through the stretching of the beams only. We provide a
convenient set of geometrical criteria to identify such networks, and derive the values of their
effective elastic moduli. The analysis of these criteria elucidates the variability of mechanical
response of elastic networks. In particular, our study rationalizes the difference in mechanical
behavior of cellular and fiber networks.

Copyright c© EPLA, 2009

Introduction. – Various elastic systems can be under-
stood as networks of interconnected rods which deform
by a combination of bending, stretching, twisting and
shearing mechanisms. Examples include polymer gels,
protein networks and cytoskeletal structures [1–7], crystal
atomic lattices and granular materials [8,9], paper [10,11],
wood, foams, and bones [12–16], and even continuous elas-
tic bodies under certain circumstances [17]. Moreover,
the pairwise interaction potentials used in standard elas-
tic percolation models can also be identified with the
strain energy of elastic beams [1,8,18]. Despite extensive
research [2–7,19–22], the connection between the mechan-
ical properties of such networks on a macroscopic level
and the description of their structures on a microscopic
level has not been completely elucidated yet. Interest-
ingly, under identical loading conditions, some structures
appear to deform primarily through the local stretching
of the beams, while in other structures the elastic energy
is stored via local bending [12,13] (twisting and shear-
ing contributions are usually neglected). For instance,
“foam-like” cellular architectures tend to be bending-
dominated [2,3], while fibrous architectures exhibit a rich
mechanical behavior: Head et al. [4,5] and Wilhelm and
Frey [6] simulated the two-dimensional elastic deformation
of a network of cross-linked fibers and observed a tran-
sition from a nonaffine, bending-dominated regime to an
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affine, stretch-dominated regime with increasing density of
fibers. Recent experimental studies [23,24] and mean field
theories [25,26] have confirmed this transition. Buxton
and Clarke [7] also characterized a similar bending-to-
stretching transition in three-dimensional networks, in
terms of the connectivity of nodes. Elucidating this vari-
ability of mechanical response is of interest to structural
applications, as well as to our understanding of various
biological systems.
With this aim in view, we analyze in this letter the

structural conditions under which a network of beams
deforms uniformly (affinely) through the extension or
compression of its members. Only some specific network
geometries are compatible with such an affine, stretch-
dominated, deformation. Indeed, the network architecture
must meet two requirements: the possible symmetries of
the structure, and the mechanical equilibrium at every
point of the network, respectively. The first requirement
results in restrictions on the beam angular distribution.
We will limit our analysis to isotropic structures, though
the reasoning can be transposed without difficulty to
materials with lower symmetries. The second requirement
results in restrictions on the possible configurations of the
junctions. The inspection of these requirements provides
a convenient set of geometrical criteria to identify the
structures that deform affinely. Moreover, the analysis
of these geometrical criteria rationalizes the observations
reported on the mechanical behavior of cellular and fiber
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Fig. 1: Geometry of a typical beam (i, j). Under an affine
displacement field, the beam is subjected to a combination of
translation, rotation, and compression/extension.

networks, and clarifies how the microscopic structural
parameters (density of beams, density and connectivity
of nodes, . . . ) affect the macroscopic mechanical response
of such networks. We will consider essentially athermal
systems, and specify how the results can be extended to
the case of thermal beams.

Isotropy requirement. – Affine strain, being a
combination of translation, rotation and extension,
induces only stretching and compression of beams (see
fig. 1). Therefore, an analytic expression for the elastic
energy associated with such a strain can be easily derived.
Let ǫij be the relative change in length of the beam
linking nodes i and j. Then, the elastic energy of this
beam is κslijǫ

2
ij/2, where lij is its initial length, and κs

the one-dimensional stretch/compression modulus. κs is
determined by Young’s modulus of the beam material
E0 and the beam cross-sectional area s: κs =E0s. For
slender rods (

√
s≪ lij), the contribution of nodes to the

strain energy can be neglected in comparison with the
stretching energy of beams. The energy of the whole
network is then simply obtained by summing over all the
beams that are under extension/contraction:

E = κs
2

∑

(i,j)

lijǫ
2
ij . (1)

For an affine strain, the displacement field u is a linear
application of the position r: u=A · r, where A is the
matrix associated with the strain. For instance, Aαβ =
A0δαxδβy for a uniform shear strain A0 in the xy plane,
and Aαβ =A0δαβ for a uniform radial strain A0. For
small strains, ǫij = eij · (uj −ui)/lij , where uj −ui is the
relative displacement of nodes i and j, and eij is the unit
vector pointing from i to j. Therefore, the relative change
in length can be written as

ǫij =
∑

α,β

Aαβe
α
ije
β
ij , (2)

where eαij = eα · eij is the cosine of the angle between the
beam (i, j) and the α axis (α∈ {x, y} for two-dimensional
materials, and α∈ {x, y, z} for three-dimensional mate-
rials). Usually, isotropic networks are idealized as

continuous and uniform angular distributions of identical
beams [4,5,15,16]. However, this simplistic model does
not account for the structural limitations imposed by the
isotropic symmetry. Actually, isotropic networks might
contain beams with different lengths, or distributed non-
uniformly. By definition, the strain energy of an isotropic
network must be invariant under rotations and reflections
of the strain field. Therefore, the energy expression
deduced from eqs. (1) and (2) must be invariant under
the substitution A→RT ·A ·R, for any orthogonal
matrix R. After a little algebra, the application of
these invariance properties leads to the following set of
relations:

⎧

⎨

⎩

〈eαij2〉= 1d , 〈eαij4〉=
3

d (d+2)
,

〈eαij2eβije
γ
ij〉= 0 (β �= γ)

(3)

with d= 2 for two-dimensional (2D) networks, and d= 3
for three-dimensional (3D) networks. The angular brackets
denote an average over the network, defined for any quan-
tity qij as: 〈qij〉=

∑

(i,j) lijqij/
∑

(i,j) lij . If the network

contains beams with free end(s), they must be excluded
from the above summations, since they do not contribute
to its mechanical properties. The “isotropy conditions”
(3) constitute a set of 4 (respectively, 14) equations for
2D (respectively, 3D) networks. As expected, these condi-
tions are satisfied for a continuous and uniform angular
distribution of identical beams. But they are also satis-
fied for networks with discrete angular distributions or
heterogeneous beams, as it is the case for most cellular
structures [27].
Networks that deform in an affine (stretch-dominated)

way are stiffer than other networks of similar density. With
the help of the isotropy conditions (3), it is straightforward
to derive analytic expressions for the elastic moduli of
such stiff networks. Indeed, these conditions imply that
〈(eβije

γ
ij)
2〉= 1/(d(d+2)) and 〈eβije

γ
ij〉= 0 (with β �= γ).

Thus, the density of strain energy ε simplifies to

ε=
κsρc
d (d+2)

⎛

⎝

1

2

(

∑

α

aαα

)2

+
∑

α,β

a2αβ

⎞

⎠ , (4)

with aαβ = (Aαβ +Aβα)/2. ρc is the corrected line density,
defined as the total beam length per unit area (2D) or
unit volume (3D), agreeing that only beams connected
at both ends are taken into account (i.e.: dangling ends
are disregarded). Equation (4) must be compared with
the general expression for the strain energy density of an
isotropic body in linear elasticity [28]:

ε=
λ

2

(

∑

α

uαα

)2

+μ
∑

α,β

u2αβ , (5)

where λ is Lamé’s first parameter, μ the shear modulus

(or Lamé’s second parameter), and uαβ =
1
2

(

∂uα
∂xβ
+
∂uβ
∂xα

)
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Table 1: Elastic moduli of stiff isotropic networks normalized
by the one-dimensional stretching modulus κs: Lamé’s first
parameter (λ), shear modulus (µ), Young’s modulus (E), bulk
modulus (K), and Poisson’s ratio (ν).

λ/κs μ/κs E/κs K/κs ν
2D ρc/8 ρc/8 ρc/3 ρc/4 1/3
3D ρc/15 ρc/15 ρc/6 ρc/9 1/4

are the components of the strain tensor (uα are the
components of the displacement field). One obtains for the
effective Lamé’s parameters of an isotropic stiff network:

λ= μ=
κs

d (d+2)
ρc. (6)

Any other elastic modulus of an isotropic body is related
to λ and μ [28], and hence can be easily evaluated.
Values of most common moduli are reported in table 1.
These values coincide with those reported in the literature
[4,5,12,15,16,29,30] (note, however, that our values of E
and ν correct those given by Head et al. [4,5]). They
constitute upper-bounds for the macroscopic moduli of
networks with similar density ρc: any deviations from
affine deformation can only lower the stiffness of the
material [27]. It can also be noticed that these elastic
moduli vary linearly with ρc, in agreement with scaling
arguments [7,13].

Mechanical equilibrium requirement. – Obvi-
ously, the isotropy conditions (3) alone are not sufficient
to identify the structures which deform in an affine
manner: the compatibility of an affine deformation with
the equations of mechanical equilibrium must also be
inspected. The forces and torques acting on any junction
of the network must balance at equilibrium. The (tensile)
force exerted by the beam (i, j) on the junction i is
κsǫijeij , where ǫij is related to the affine strain field by
eq. (2). Thus, the moment of this axial force is zero, and
the mechanical equilibrium conditions reduce to the force
balance:

∑

j ǫijeij = 0, where the summation is over all
the nodes that are connected to the node i (agreeing
that dangling ends are disregarded). This equality must
hold for any orientation of the strain field. Using the
same rotational invariance argument as for the energy
expression, we obtain a set of structural conditions at
every junction i of the 2D (respectively, 3D) network,
which can be summarized as

∑

j

eαije
β
ije
γ
ij = 0, (7)

for all α, β, γ ∈ {x, y} (resp. {x, y, z}). Therefore, the
mechanical equilibrium requirements lead to a set of 4
(respectively, 10) equations per node for 2D (respectively,
3D) networks. These conditions, along with the isotropy
conditions (3), constitute a set of necessary and sufficient
conditions for an affine, stretch-dominated, deformation.

The mechanical conditions (7) impose severe restrictions
on the geometry and valency of a junction. Some of the
implications of these conditions are analyzed below for 2D
networks. Let us note zi the connectivity of node i (number
of beams connected to it, with the exception of dangling
ends), and θij the angle between the beam (i, j) and the
x axis. Introducing the complex variables yij = exp(ıθij),
the mechanical equilibrium conditions (7) simplify to

zi
∑

j=1

yij = 0,

zi
∑

j=1

y3ij = 0. (8)

Clearly, there is no solution to this set of equations for two-
(zi=2) and three-fold (zi = 3) junctions (configurations
with beams all collinear are left out). In agreement with
Maxwell’s criterion [14,19,26,31–33], we conclude that a
stiff network must have a node connectivity equal to or
greater than 4 (for large structures). Furthermore, it can
be shown [27] that the only possible configurations for
a four-fold junction (zi=4) are those with beams paral-
lel in pairs: θi3 = θi1+π, θi4 = θi2+π (see footnote

1).
These results shed light on the transition observed in
computational and experimental studies of cross-linked
fibers [4–6,24]: because of the finite fiber length, there
are two-, three-, and four-fold coordinated cross-links in
such networks. By construction, the mechanical condi-
tions (8) are fulfilled at the four-fold junctions, but not
at the two- and three-fold junctions. At low density of
fibers (ρcL∼ 1, where L is the length of a fiber), there is a
significant number of two- and three-fold junctions, so the
network deforms in a non-affine way2. When the density
of fibers increases, the proportion of two- and three-fold
nodes decreases and the proportion of four-fold nodes
increases, leading asymptotically (ρcL→∞) to an affine
strain regime3. This is consistent with earlier observations
[4–6,24] reporting that the deformation of a fiber network
becomes asymptotically affine as the number of cross-links
per fiber (∼ ρcL) increases. It must be noted that this
analysis is valid for small strains only. At larger strains,
even low-density fiber networks will eventually become
stretch-dominated [20–22].
Similarly, our results reveal why cellular networks are

almost always bending-dominated [2,3,14]: such structures
usually do not meet the mechanical conditions (7). This
is specifically the case of open-cell foams. Foams are
particular cellular materials: their structures result from a
surface minimization process, leading to geometrical and
topological rules, known as Plateau’s laws. Unlike a closed-
cell foam, the cell walls of an open-cell foam disappear

1The analysis of the solutions for nodes with valency zi � 5 is
more delicate. Nodes with an even number of adjoining beams have
trivial solutions: beams parallel in pairs. But it is not clear whether
these are the only solutions.
2Such a network will deform through floppy modes if the typical

elastic energy of a node is much smaller than the typical bending
energy of a beam (free hinges) [33], and primarily through bending
modes in the opposite limiting case (fixed angles).
3The random orientation of fibers ensures that isotropy conditions

(3) are satisfied.
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Fig. 2: (Colour on-line) Examples of two-dimensional networks:
low-density fiber network (a), high-density fiber network (b),
Voronoi diagram of a random set of points in the plane (c), and
triangular lattice (d). For convenience, dangling ends in the
fiber networks are shaded off. By construction, the low-density
fiber network (a) and Voronoi diagram (c) contain nodes with
valency < 4, and so deform in a non-affine way (see footnote 2).
On the other hand, the high-density fiber network (b) and the
triangular lattice (d) satisfy the mechanical conditions (7) at
every node. Consistent with our analysis, these two networks
deform uniformly.

during the drying process, leaving only a network of
interconnected edges. Plateau’s laws state that these
edges meet in threefold (respectively, fourfold) junctions
with equal angles of 120◦ (respectively, 109.5◦) in 2D
(respectively, 3D) foams. Such node configurations cannot
satisfy the equilibrium conditions (7). Therefore, open-cell
foams will rather deform by bending of their edges.
Figure 2 illustrates this discussion. Four different

structures are depicted: two fiber networks at low and
high density, respectively, and two cellular networks: the
Voronoi diagram of a random set of points in the plane,
and a triangular lattice. For each of these structures,
the isotropy conditions (3) are met. But only the fiber
network in the limit of high density (rigorously, when
ρcL→∞) and the triangular lattice satisfy the mechanical
conditions (7) at every node, and thus deform uniformly.
Incidentally, it is worth noting that our results apply
to both random and regular structures. The triangular
lattice is one example of regular structure deforming in an
affine way. Other examples of two- and three-dimensional
regular structures are given in [27].
In the above, we have considered a purely athermal

model of networks. However, many biological systems are
comprised of thermally fluctuating polymers. In these

systems, the effects of temperature on the elastic prop-
erties of the polymer are quantified by the persistence
length lp, defined as the ratio of bending stiffness to ther-
mal energy lp = κb/(kBT ) (κb =E0s

2/(4π) for a cylindri-
cal beam). Such thermal fluctuations result in an effective,
length-dependent, stretch modulus [3–5]: κths ∼ κblp/l3ij for
a thermal beam of length lij . This entropic compliance
dominates for long enough beams, giving rise to a distinct
affine regime. Accordingly, the mechanical condition (7)

becomes for this affine entropic regime:
∑

j e
α
ije
β
ije
γ
ij/l

3
ij =

0. Unlike in the affine mechanical regime, the mechani-
cal conditions in the affine entropic regime depend on the
beam length distribution. It must be mentioned that an
alternative model has been recently proposed to explain
the mechanical response of biological networks, in which
the elastic network is composed of rigid rods connected by
flexible cross-linkers [34,35].

Conclusion. – In summary, we analyzed the structural
features of isotropic networks which deform uniformly
through the stretching/compression of their beams. The
study of these structural features sheds light on the
relationship between the structural details of a network
and its macroscopic mechanical behavior, and rationalizes
the variability of mechanical response of diverse elastic
networks (fibrous and cellular, regular and disordered). In
particular, our analysis confirms the previously observed
bending-to-stretching transition in fiber networks. The
elastic moduli of networks that deform affinely are also
derived, and can be simply expressed in terms of the beam
stretch modulus and the line density. We hope these results
are of interest to structural applications, as well as to our
understanding of biological systems.
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